
Stat2

Building Models for a World of Data

R Companion

Ann R. Cannon George W. Cobb
Cornell College Mount Holyoke College

Bradley A. Hartlaub Julie M. Legler
Kenyon College St. Olaf College

Robin H. Lock Thomas L. Moore
St. Lawrence University Grinnell College

Allan J. Rossman Jeffrey A. Witmer
California Polytechnic State University Oberlin College

W. H. Freeman and Company
New York

c⃝2013 by W. H. Freeman and Company

ISBN-13: 978-1-4641-0268-4
ISBN-10: 1-4641-0268-6

All rights reserved

Printed in the United States of America

First printing

W. H. Freeman and Company
41 Madison Avenue
New York, NY 10010
Houndmills, Basingstoke RG21 6XS, England

www.whfreeman.com

Contents

-1 R Basics 3

-1.1 Arithmetic and Assigning Values to Variables . 3

-1.2 Command Line Interface . 4

-1.3 Working with Data Objects . 5

-1.4 R Functions: Built-In and User-Defined . 12

0 What is a Statistical Model? 15

1 Simple Linear Regression with R 21

1.1 The Simple Linear Regression Model . 21

1.2 Conditions for a Simple Linear Model: Regression Standard Error 26

1.3 Assessing Conditions: Diagnostic plots . 26

1.4 Transformations and Other Residual Plots . 27

1.5 Outliers and Influential Points . 30

2 Inference for Simple Linear Regression 33

3 Multiple Regression 37

3.1 Multiple Linear Regression Model . 38

3.2 Assessing a Multiple Regression Model . 38

3.3 Comparing Two Regression Lines . 39

3.4 New Predictors from Old . 41

3.5 Correlated Predictors and Variance-Inflation Factors 45

3.6 The Nested F-test and Taking Time for an “R Moment” 46

4 Additional Regression Topics 49

4.1 Added Variable Plots . 49

4.2 Techniques for Choosing Predictors . 51

4.3 Identifying Unusual Points in Regression . 57

4.4 Coding Categorical Predictors . 59

4.5 Randomization Test for a Relationship . 60

4.6 Bootstrap for Regression . 61

iii

iv CONTENTS

5 Analysis of Variance 63
5.1 The One-Way Model: Comparing Groups . 63
5.2 Assessing and Using the Model for One-Way ANOVA 66
5.4 Fisher’s Least Significant Difference . 67

6 Multifactor ANOVA 69
6.1 The Two-Way Additive Model (Main Effects Model) 69
6.2 Interaction in the Two-Way Model . 73

7 Additional ANOVA Topics 75
7.1 Levene’s Test for Homogeneity of Variances . 75
7.2 Multiple Tests . 75
7.3 Comparisons and Contrasts . 81
7.4 Nonparametric Statistics . 82
7.5 ANOVA and Regression with Indicators . 86

9 Logistic Regression 97
9.1 Choosing a Logistic Regression Model . 97
9.2 Logistic Regression and Odds Ratios . 103
9.3 Assessing the Logistic Regression Model . 107
9.4 Formal Inference: Tests and Intervals . 108

10 Multiple Logistic Regression 111
10.1 Overview . 111
10.2 Choosing, Fitting, and Interpreting Models . 111
10.4 Formal Inference: Tests and Intervals . 114
10.5 Case Study: Bird Nests . 119

11 Logistic Regression: Additional Topics 121
11.2 Assessing Logistic Regression Models . 121
11.3 Randomization Tests . 128
11.4 Analyzing Two-way Tables with Logistic Regression 132

Index 139

Introduction

R is an open-source computer language tailored toward data analysis and presentation. R runs on
Windows, Mac, or Linux platforms. R is powerful and flexible, and it differs from many software
packages in that it uses a command-line interface rather than a gui or menu-driven interface. In
saying this, we acknowledge that there are presently projects ongoing that give the user an optional
gui environment, but we present R here in its pure form, as the gui options can be learned inde-
pendently. Underlying any implementation of R is the command-line interface.

This document will follow the order of the textbook, so that you may read it along with reading
the book. That is why we call it a companion.

Note about figure, example, and section numbering: In this Companion we will replicate
many examples and figures that appear in the text. In all such cases, we will use the same figure or
example number as appears in the text. For figures or examples that are unique to the Companion
we will use a figure or example identifier that is of the form chapter.letter. For example, Figure
1.2 in the Companion is also Figure 1.2 in the text; Figure 1.A is a figure unique to the Companion.
Where possible, we will also make section numbers in the Companion match those in the text.

We will occasionally refer to two books that are useful reference guides to R. They are:

• The R Book, by Michael J. Crawley, 2007: Wiley, Chichester, England.

• An Introduction to R, by W. N. Venables and D. M. Smith and the R Development Core
Team, 2010: at the R website, http://cran.r-project.org/.

When we refer to these books we will use notation such as Crawley[page number] or RIntro[page
number]. More generally, you will find these books to be useful references as you learn R.

1

CHAPTER -1

R Basics

(Note: The text begins with Chapter 0, but we begin here with Chapter −1 where we introduce
basic R concepts before getting to material in the text.)

-1.1 Arithmetic and Assigning Values to Variables

How you enter the R package will depend upon whether you are on a PC, Mac, or Linux machine.
Once inside R, you will work with R’s prompt which is the > symbol. To the right of this prompt
goes what you type. To complete a command, you strike the “enter” key. So, for example, here is
a small piece of R input and output:

> 1 + 4

[1] 5

>

The > was sitting on the screen, we typed in the 1 + 4 followed by the enter key, and then R
returned the [1] 5 and the next > prompt. When you type an incomplete line into R, R will
recognize the incompleteness and return a + for a prompt instead of the >, which will be your signal
to complete the line.

Generally spaces in mathematical expressions are optional and R ignores them; thus 1 + 4 is the
same as 1+ 4 is the same as 1+4.

Arithmetic operations are +, -, *, /, and ˆ for (respectively) addition, subtraction, multiplication,
division, and exponentiation; order of operations is as you learned in school.

While using R for basic arithmetic is fine, we mostly use it to analyze data. R stores data and other
information in various types of what are called objects. Of the several types of objects for data
storage, the most common are vectors, matrices, and data frames. Data frames are special to R;
they are similar to matrices but with some special properties that make them the most important

3

4 CHAPTER -1. R BASICS

of the data storage objects.

The R language is built around functions that take objects as inputs and create other objects as
outputs. Usually we will want to store objects—be they data storage objects or function output
objects—into named variables. Thus, output from one function call can become the input for an-
other function call. As simple as it seems, it is this capability to store any object that is one of R’s
most powerful features.

We begin with vectors. As in mathematics, a vector is an ordered set of numbers or an ordered set
of characters. Here is a simple example, followed by a blow by blow explanation.

> x <- c(10, 3, 3, 4)

> x + 4

[1] 14 7 7 8

> y <- max(x)

> y

[1] 10

> x^2

[1] 100 9 9 16

To assign a value to a variable name we use the assignment operator which is <-. (Note: The =

sign may also be used for assignment. You will see both in this book. The <- makes clear that
there is a direction to the assignment operation: The object on the right is being assigned to the
variable named on the left. The = saves you a key stroke each time.)

Here is a line by line explanation of the example. First, remember that the user is typing what
comes after the > on the line. Lines beginning with [1] are R’s responses to a user’s line. Notice
that assignment lines (such as the first line and the fourth) do not result in output. To see output
requires a line that either just asks for the contents of a variable (e.g., the line > y) or makes a
calculation without an assignment (e.g., > x+ 4).

In the first line, the concatenate function c builds up a vector of length 4 containing the numbers
10, 3, 3, 4. The next line defines a vector x + 4 that adds 4 to each component of the vector x;
the third line beginning with [1] is R’s response to the second line, that is, the vector containing
elements 14, 7, 7, and 8. The fourth line assigns to a variable named y the maximum of the vector
x. Since the maximum element of the vector is 10, y is a variable whose value is 10. The seventh
line asks for the vector x to be squared. The squaring occurs element by element and the result is
given in line 8.

-1.2 Command Line Interface

A nice feature of R over point-and-click software is that one can write R code into a text file and
execute the R code. For example, if you copy and paste the following lines into R—paste alongside

-1.3. WORKING WITH DATA OBJECTS 5

the most recent > prompt—then R executes those lines. Try it! That is, type these 4 lines into
a text file and copy and paste them into the R session window. The result will be that vectors x
and y are created, the number 10 is output since 10 is the maximum value of the vector x and the
vector [1] 86 2 2 8 will be printed out as the result of that last line. (Note: We intentionally left
off the > prompt from these lines, so you could copy and paste them easily if you have an electronic
document before you. In most cases, we will include the > prompt with R code, so cutting and
pasting will require your excluding it.)

x <- c(10, 3, 3, 4)

y <- x+4

max(x)

x^2 - y

Because of this executable text feature of R, one can more easily retain what operations you are
asking R to do and you can easily repeat or modify existing code. Especially when using this
feature of R, comments can be very useful ways to document what the code is doing, either for
someone else’s benefit or your future benefit. R uses the # symbol for comments. Any text on a
line that appears after that symbol is ignored by R, so it is there solely to aid you or a future user
of your code. Here is the previous code with a couple of comments added. The code is exactly the
same with regard to what R does.

the following code illustrates some basic R syntax.

x <- c(10, 3, 3, 4)

y <- x+4 #Add 4 to each element of x

max(x)

x^2 - y # keep in mind with R arithmetic on vectors, the operations

occur coordinate-wise.

-1.3 Working with Data Objects

Entering Data

One often builds small data objects through a sequence of simple commands. We provide some
examples with the R code below. We annotate pieces of the code with explanations inside R
remarks (headed with #). Note: There are hundreds of R commands, most of which you will never
use. You are not expected to memorize the commands we show in the next few lines—and you may
never use some of these particular commands—but we want to show you the flavor and versatility
of R.

6 CHAPTER -1. R BASICS

First create a vector x, length 6, with mean 4.166667 and SD 1.940790.

> x <- c(1, 3, 4, 6, 5, 6)

> x

[1] 1 3 4 6 5 6

> mean(x)

[1] 4.166667

> sd(x)

[1] 1.940790

Next create matrix y from the vector x, making it into 3 rows (and

thus, 2 columns).

> y <- matrix(x,nrow=3)

> y

[,1] [,2]

[1,] 1 6

[2,] 3 5

[3,] 4 6

Use the apply function to sum row by row (first command) ...

and then column by column (second command).

> apply(y,1,sum)

[1] 7 8 10

> apply(y,2,sum)

[1] 8 17

Create matrix z from the vector x, again with 3 rows and 2 columns,

but this time reading in the numbers by rows rather than the default of

by columns.

> z <- matrix(x,nrow=3,byrow=TRUE)

> z

[,1] [,2]

[1,] 1 3

[2,] 4 6

[3,] 5 6

Besides very basic building of vectors and matrices, this code illustrates the apply function, a
function that operates on a matrix (or more generally an array of any dimension) and performs
the function given in the third argument location. The second argument of apply is a 1 if the
operations are done row by row and a 2 if column by column.

Now, let’s talk about data frames. We are going to take the matrix z and pretend it represents
two pieces of information for each of three children: Emily, Tim, and Jeff. The code below creates
a vector called name and a matrix called my.mat. Notice the use of the cbind function to combine

-1.3. WORKING WITH DATA OBJECTS 7

column-wise the vector of names name with the numeric matrix z. We use the query functions
is.matrix and is.data.frame to verify that my.mat is a matrix and is not a data frame. Finally,
we print out my.mat.

> name <- c("Emily", "Tim", "Jeff") # create a vector of names

> my.mat <- cbind(name, z) # cbind means combine column-wise

> is.matrix(my.mat) # is.matrix is a query function ...

[1] TRUE # ... and we learn that my.mat is a matrix

> is.data.frame(my.mat) # (another query function)

[1] FALSE # ... but it is not a data frame.

> my.mat # print out the matrix my.mat

name

[1,] "Emily" "1" "3"

[2,] "Tim" "4" "6"

[3,] "Jeff" "5" "6"

Next, we print out the second column of the matrix (using my.mat[,2]). Notice the quotation marks
around the numbers. This means that R has interpreted all values in the matrix as character values,
rather than numbers. This coercion of numbers to characters happened because matrices are only
allowed to be all numbers, or all characters, or all some other type of data. Since R recognized the
first column as character data, all data had to be character. Thus in the second command, when
we attempt to take the mean value of the second column, R gives us an error message.

> my.mat[,2]

[1] "1" "4" "5"

> mean(my.mat[,2])

[1] NA

Warning message:

In mean.default(my.mat[, 2]) :

argument is not numeric or logical: returning NA

Data frames are similar to matrices, but they allow both character and numeric variables. So we
proceed to construct a data frame, my.data, using the data.frame function. Now, we can take the
mean of the second column.

> my.data <-data.frame(name,z)

> is.data.frame(my.data)

[1] TRUE

> mean(my.data[,2])

[1] 3.333333

8 CHAPTER -1. R BASICS

Now, we are going to invent a story. We will pretend the second column is a variable giving the
number of teeth each child had sprouted by age 6 months. We name this variable Teeth. We will
pretend the third column gives the month in which the child first crawled. We redefine the first
variable to be Name. The function call names(my.data) assigns the vector of names as the names
of this little (fictitious) data set.

> names(my.data) <- c("Name","Teeth","Crawl")

> my.data

Name Teeth Crawl

1 Emily 1 3

2 Tim 4 6

3 Jeff 5 6

> names(my.data)

[1] "Name" "Teeth" "Crawl"

The next section of code is important for much we will do later. Suppose we want the mean number
of teeth. Notice that the command mean(Teeth) produces an error message. This is because we
have to refer to that variable by the longer name my.data$Teeth. This necessity of the long-winded
variable name can be cumbersome, more so if our keyboard skills are meager. So R provides a short-
cut through the attach function. The attach(my.data) function call tells R to bring up the data
frame my.data and all variable references can now be made without the cumbersome prefix.

> mean(Teeth)

Error in mean(Teeth) : object ’Teeth’ not found

> mean(my.data$Teeth)

[1] 3.333333

> attach(my.data)

> mean(Teeth)

[1] 3.333333

Some Technicalities About attach and the search path

Note: We include this section on technicalities because at some point you may find it useful. But
in your initial learning of R you can get by with skimming this section.

The effect of the function call attach(my.data) is to place the data frame my.data onto the sys-
tem’s search path. The search path is a sequence of objects or folders where R will search for a
referenced object such as a variable. To see how this works we consider the code below. Here is
the explanation. The code search() asks R for the current search path, that is for the sequence
of directories or folders or data frames that R will search through whenever you require it to use
or find an object. The first in the list is .GlobalEnv which refers to the current workspace; other
folders follow and are built into R. The next line of code entered is the call Teeth. Notice from the

-1.3. WORKING WITH DATA OBJECTS 9

error message that R cannot find a variable called Teeth and that is because Teeth only exists as
a variable in the data frame my.data and this data frame is not on the search path. The third line
of code we execute rectifies the situation. By typing the function call attach(my.data) we see by
the fourth line search() that the my.data data frame has now been placed in position 2 of the
search path. Next, we subsequently enter Teeth again; this causes R to look for Teeth along the
search path. There is no such variable in the first place looked (that is, .GlobalEnv), so R looks
then in the second place, which is my.data, where it finds Teeth and prints it out.

To continue the lesson, we now create a second variable called Teeth, a vector of the consecutive
integers from 1 to 10. Now, typing Teeth induces a search starting with the main workspace,
.GlobalEnv, which results in R typing out the new vector Teeth. The version of Teeth in the main
workspace masks the version inside my.data. We could print out the variable my.data$Teeth (i.e.,
the three numbers 1, 4, and 5) using the get function and putting 2 in the pos argument; that is
looking in position 2 of the search path, the position occupied by my.data. (We will rarely use the
get function, but this section was, recall, advertised as technicalities.)

When we are finished working with our data frame my.data we type detach(), which removes it
from the search path.

> search() # Ask R for the current search path.

[1] ".GlobalEnv" "package:stats" "package:graphics"

"package:grDevices" "package:utils"

[6] "package:datasets" "package:methods"

"Autoloads" "package:base"

> Teeth # Since my.data is not on the search path

R cannot find it; hence this error message:

Error: object ’Teeth’ not found

> attach(my.data) # This command puts my.data onto

the search path, which ...

> search() # ... this command verifies.

[1] ".GlobalEnv" "my.data" "package:stats"

"package:graphics" "package:grDevices"

[6] "package:utils" "package:datasets" "package:methods"

"Autoloads" "package:base"

> Teeth # Now R can find the vector Teeth.

[1] 1 4 5

> Teeth <- 1:10 # We create a second vector Teeth

which resides in the main workspace

10 CHAPTER -1. R BASICS

called .GlobalEnv, which is in

position 1 of the search path.

> Teeth # Thus, when we ask for Teeth, R finds

the one in .GlobalEnv first.

[1] 1 2 3 4 5 6 7 8 9 10

> get("Teeth",pos=2) # If we want the other Teeth,

we must specify position in the

search path.

[1] 1 4 5

> detach()

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

"package:grDevices" "package:utils"

[6] "package:datasets" "package:methods"

"Autoloads" "package:base"

Getting an External Dataset and Extracting Pieces of It

Usually, we will be working with larger data frames that are stored externally. There are a variety
of R functions for reading in such data; type help(read.table) to get an overview. We will
illustrate one we will favor for this document, the version called read.csv, which reads external
comma-separated-variable datasets.

Here is an example. We obtain the dataset described in Exercise 0.11 of the text. The variables,
named below, are answers to questions on a survey given to students. The dim(Day1Survey.df)

tells us that there are 43 cases and 13 variables in the dataset. We use the names function to print
out the names of the 13 variables. Note: Here we have assigned the name of the data frame as
Day1Survey.df. There is no technical meaning to the suffix .df at the end of this name; we simply
use it to remind outselves that this object is a data frame.

Day1Survey.df <- read.csv(file=file.choose())

> dim(Day1Survey.df)

[1] 43 13

> names(Day1Survey.df)

[1] "Section" "Class" "Sex" "Distance" "Height" "Handedness" "Coins"

[8] "WhiteString" "BlackString" "Reading" "TV" "Pulse" "Texting"

-1.3. WORKING WITH DATA OBJECTS 11

We now will use this dataset to illustrate important R operations for extracting pieces of a data
set. Skill in manipulating datasets is invaluable, takes time to learn, but is well worth learning.

First, attach the dataset, so we can easily refer to variable names.

attach(Day1Survey.df)

The first command line below illustrates extracting sections of data using the [] notation. The
first entry in the pair refers to rows, the second to columns. We have asked R to print out the first
row and columns 3, 4, and 6, and we find that the first student in the list was a female, whose home
is 400 miles from campus, and she is right-handed. The second command shows that we can use
the names rather than the column numbers, but names are in quotes. If we leave blank the rows
selection then we get all rows; if we leave blank the columns selection then we get all columns. The
blank argument acts as a “wild card.” For example, the third command asks for all rows, since the
first entry (before the comma) is blank; we are thus given the sex of each of the 43 cases.

> Day1Survey.df[1,c(3,4,6)]

Sex Distance Handedness

1 F 400 Right

> Day1Survey.df[1,c("Sex","Distance","Handedness")]

Sex Distance Handedness

1 F 400 Right

> Day1Survey.df[,3]

[1] F F F M F M F M M M M M M F M F M M M M F M M F M M F M

[29] F M F F M M F M M M M F F M F

Levels: F M

The following command line is a logical operation asking whether each case has value “M”, that
is, it asks whether a case is male or not. The result is a sequence of 43 TRUE or FALSE values.
Notice the first three cases are female, followed by a male, then a female, then a male, etc. The
next command line males.df <- Day1Survey.df[Sex=="M",] creates a subset of the data, a new
data frame called males.df that contains 26 cases and all 13 variables. Finally, we construct a
dataset called TallTV.males.df consisting of those males who are 72 inches tall or taller but only
selecting out their Height and TV values. Notice the use of the ampersand (&) to indicate the
logical operator AND in order to subset out those cases that are both male AND at least 72 inches
tall.

> Sex=="M"

[1] FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE

[11] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE

[19] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE

12 CHAPTER -1. R BASICS

[30] TRUE FALSE FALSE TRUE TRUE FALSE TRUE

[37] TRUE TRUE TRUE FALSE FALSE TRUE FALSE

> males.df <- Day1Survey.df[Sex=="M",]

> dim(males.df)

[1] 26 13

> TallTV.males.df <- Day1Survey.df[Sex=="M" & Height>=72,c("Height","TV")]

> dim(TallTV.males.df)

[1] 12 2

-1.4 R Functions: Built-In and User-Defined

R is all about functions. Functions accept numbers, vectors, matrices, and other objects as inputs
and give outputs that will be an R object of some kind. Functions are of two types: functions
already defined in the R language and functions you, the user, define.

Built-In Functions

R provides you with a large collection of built-in functions for doing numerical and vector math-
ematics and logical operations. We will introduce some functions here and others as we work our
way through the text.

R provides some familiar mathematical functions such as log, exp, and sqrt. These three are used
often in statistics. (There are many other functions, including trigonometric functions.) Here are
some examples:

> exp(1)

[1] 2.718282

> log(exp(4))

[1] 4

> sqrt(20)

[1] 4.472136

Notice that log refers to natural (base e) log. There are also the functions log10 and log2 for
base-10 and base-2 logs. But arbitrary bases are possible using the log function. To see this, we
use one of the more helpful of R functions, the help function, which the following illustrates:

-1.4. R FUNCTIONS: BUILT-IN AND USER-DEFINED 13

> help(log)

[Much of the R help message is expunged here]

log(x, base = exp(1))

logb(x, base = exp(1))

log10(x)

log2(x)

The help message causes R to produce a help message explaining the function in question. It pays
learning to read help messages, even though they often give more information than one needs at
the moment. In this case, we expunged much of the superfluous (for this discussion) output. The
main point is that the top line of syntax is not as simple as log(x). The “x” in the command is an
argument, but R tells us there is a second argument, called “base.” We now digresss to arguments
of functions.

Arguments to Functions

In the command log(20), the “20” is the argument to the function. But, as we know, functions
may have multiple arguments and—as the help message informed us—the log function does. The
help message tells us that the first argument (the “x”) is the value we will take the logarithm of.
The second argument is the number we will use as the base for the logarithm. Here is a sequence
of lines that will illustrate the function and some conventions about how arguments work.

> log(8) # the base-e log of 8

[1] 2.079442

> log(8,base=exp(1)) # same result as the default base is e

[1] 2.079442

> exp(1)

[1] 2.718282 # just to see that exp(1) really is e

> log(8,base=2) # now log of 8, but base 2

[1] 3

> log(8,2) # one can define arguments by position instead

[1] 3

> log(2,8) # but the log of 2 to base 8 is different

[1] 0.3333333

The first command line (meaning a line beginning with a >) asks for the natural log (base e log)
of 8. (You could check this with a hand-held calculator.) The second command line does the
same thing, since the base given in the second argument—exp(1)—is just the base of the natural
log, e = 2.718282.... The third command line asks for the base-2 log of 8, which is 3. The fourth
command line illustrates the principle that arguments can be passed by name or they can be passed
by position. As the help message told us, the default position of the base argument is position 2,
so if we put the base in that position, the string “base=” is superfluous.

14 CHAPTER -1. R BASICS

Finally, that fifth line of R code asks for the base-8 log of 2, which is 1/3.

User-Defined Functions

Users can define functions. Any time you find yourself doing a similar sequence of commands over
and over you should consider writing a function for the task. Functions can be very simple or
quite complicated. We will introduce some user-defined functions throughout this companion, but
we will illustrate here with a simple example. If you copy the first four lines below into R, you
will have defined a function called mymean, which allows the user to compute a trimmed mean of a
vector of nonmissing values. The main argument, the first one, is the vector, generically called x in
the function definition. There is a second argument, trim, that tells how many items of the vector
to trim (the same number trimmed high and low). We give a default value for trim, which means
that if the user doesn’t give a value to the trim argument the function will trim off no values, thus
computing the usual mean value of the vector.

We follow the function definition with examples of its use. We create a vector z of length 7. The
first call to mymean computes the straight mean value, 14. Then we call the function, but trim one
value off each end; answer is 4. Then we trim 2 off each end; now the mean is taken of the middle
3 values, but this is still 4.

mymean <- function(x,trim=0) {

y <- sort(x)

mean(y[(trim+1):(length(y)-trim)])

}

> z <- c(1:6,77) # to the vector 1, 2, ..., 6, we append 77

> mymean(z) # default is no trimming, so the usual mean

[1] 14

> mymean(z,1) # trim off the max and min; now the mean is 4

[1] 4

> mymean(z,2) # trim off 2 high and low; mean of middle 3 is still 4.

[1] 4

We will illustrate other user-defined functions throughout the companion.

CHAPTER 0

What is a Statistical Model?

Example 0.6: Financial Incentives for Weight Loss: Data analysis with two samples.
In the commands that follow, we obtain the dataset WeightLossIncentive4,1 attach it, and
produce a comparative dotplot. (Recall that attach puts our data frame in the search path so that
we can refer to variable names easily, without typing the cumbersome prefix WeightLoss.df.) Here
is how the code works. After obtaining the data frame WeightLoss.df, we use the str function
to see its structure. The first variable, WeightLoss, is numerical. The second variable, Group, is a
factor. The dataset contains two variables.

Notice also that the dotplot function requires calling in the R lattice library. A library is a folder
or collection of R objects that someone has collected together for some purpose. The lattice library
contains some special graphing functions. Notice also that the dotplots readily available with R
look different from many of those in the textbook, which are from Minitab.

#Note: Our convention will be to use the suffix .df for data frames.

> WeightLoss.df <- read.csv(file=file.choose())

#obtain the data set; R allows you to search for it.

> str(WeightLoss.df)

’data.frame’: 36 obs. of 2 variables:

$ WeightLoss: num 12.5 12 1 -5 3 -5 7.5 -2.5 20 -1 ...

$ Group : Factor w/ 2 levels "Control","Incentive": 1 1 1 1 1 1 1 1 1 1 ...

> attach(WeightLoss.df) # to allow us to more easily refer to variable names

library(lattice) # calls up the lattice library, which contains

some graphing functions we need.

xyplot(WeightLoss ~ Group) # produces comparative dotplots

1There is another dataset called WeightLossIncentive, but it contains some unwanted missing values.

15

16 CHAPTER 0. WHAT IS A STATISTICAL MODEL?

The incentivized treatment group does tend to lose more weight than the control group. We can
add summary statistics to this picture with the following code. The tapply function is similar to
the apply function we encountered in the Basics chapter. In tapply the second argument acts as
a “by” variable for the first variable, so that the function listed in position 3 (length in the first
instance; mean in the second) is applied to the first variable using the subsets of the data created
by values of the second variable.

Hence tapply(WeightLoss, Group, mean) finds the mean of the WeightLoss variable separately
for each value of Group; there are 2 Group values (Control and Incentive) and so we get a mean for
each. At this point then, n, mean, and SD are each vectors of length 3; the cbind function combines
these three vectors column-wise into a matrix of 3 columns, each of length 2.

Assuming here WeightLoss.df is attached

n <- tapply(WeightLoss,Group,length)

mean <- tapply(WeightLoss,Group,mean)

SD <- tapply(WeightLoss,Group,sd)

cbind(n,mean,SD) #combine the 3 vectors column-wise.

The resulting output:

n mean SD

Control 19 3.921053 9.107785

Incentive 17 15.676471 9.413988

We tidy up the output for more graceful communication to the reader, using the round function.
The code and output follow.

round(cbind(n,mean,SD),2) # We choose rounding to 2 decimal places.

n mean SD

Control 19 3.92 9.11

Incentive 17 15.68 9.41

With graphical and summary comparisons that suggest the Incentive group outloses the Control
group, we could follow with a two-sample t-test to ascertain whether the observed difference is
statistically significant. To do this we use the command t.test(WeightLoss ∼ Group).2 We
include the code below, which shows the difference, in favor of the Incentive group, to be highly
statistically significant.

2There are two versions of the two-sample t-test: the classical “pooled” version that assumes equal population
variances or the more robust, but approximate t-test, often called Welch’s test. The var.equal argument lets us
make this choice, the default var.equal=F being the Welch test. Using the argument var.equal=T would get the
pooled t-test.

17

Group

W
ei

gh
tL

os
s

−10

0

10

20

30

Control Incentive

Figure 0.2: Dotplot of WeightLoss versus Group (page 8)

t.test(WeightLoss ~ Group)

Welch Two Sample t-test

data: WeightLoss by Group

t = -3.7982, df = 33.276, p-value = 0.0005889

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-18.05026 -5.46058

sample estimates:

mean in group Control mean in group Incentive

3.921053 15.676471

Beyond the Data Analysis: Fit and Residual

R has built-in ways to find fitted values and residuals for the two-sample model discussed in the
text. Instead, we will take a somewhat more labor-intensive sojourn into R to compute these val-
ues, our purpose being two-fold: (1) to gain some more practice in R basics, and (2) to get a more
visceral feel for what the fitted values and residuals actually mean.

Here is an explanation of the code; to really understand what is going on, it is instructive to repro-
duce the code on your own, and to produce some of the pieces of the code suggested in what follows.
We first define a binary variable called Group.dummy. Recall that Group is a binary variable with
character values Incentive and Control. The logical expression Group==’Incentive’ produces

18 CHAPTER 0. WHAT IS A STATISTICAL MODEL?

a vector of the same length as Group (i.e., 36) that has value TRUE or FALSE, depending on
whether that entry of Group has value Incentive or Control. If you are working through this
example in your own R session, a useful check on your understanding would be to type in just the
piece of code Group==’Incentive’. Because we want the Group.dummy variable to be numeric and
not character, we use the as.numeric function, which converts TRUEs to 1’s and FALSEs to 0’s.
Next, we create two mean values mu.1 and mu.2, the means of the Control and Incentive groups,
respectively. Then, we define vector Fit (length 36 again), which has value mu.1 for Control cases
and mu.2 for Incentive cases.

Group.dummy <- as.numeric(Group=="Incentive") # Create dummy variable for Group

1=Incentive, 0=Control

mu.1 <- mean(WeightLoss[Group.dummy==0])

mu.2 <- mean(WeightLoss[Group.dummy==1])

Fit <- mu.1*(1-Group.dummy) + mu.2*Group.dummy

Resid <- WeightLoss-Fit

cbind(WeightLoss, Fit, Resid)

WeightLoss Fit Resid

[1,] 12.5 3.921053 8.5789474

[2,] 12.0 3.921053 8.0789474

[3,] 1.0 3.921053 -2.9210526

[4,] -5.0 3.921053 -8.9210526

[5,] 3.0 3.921053 -0.9210526

(output suppressed after the 5th row)

Understanding these R commands should enhance your understanding of R syntax. In the con-
struction of the two sample means, mu.1 and mu.2, we make use of a dummy variable for the Group
factor.

It is also instructive to construct “by hand” the t-statistic for the two-sample t-test above. The
code for this calculation follows.

The sd function computes a sample standard deviation. The qqnorm function computes a nor-
mal probability plot and the qqline function adds a line to this plot in order to help assess the
straightness of the normal plot.

19

> s1 <- sd(WeightLoss[Group=="Control"])

> s1

[1] 9.107785

> s2 <- sd(WeightLoss[Group=="Incentive"])

> s2

[1] 9.413988

> n1 <- length(WeightLoss[Group=="Control"])

> n1

[1] 19

> n2 <- length(WeightLoss[Group=="Incentive"])

> n2

[1] 17

> t.stat <- (mu.1 - mu.2)/sqrt(s1^2/n1 + s2^2/n1)

> t.stat

[1] -3.911902

NOTE: This result agrees with the previous output.

We re-produce Figures 0.3 (page 10) and 0.4 (page 10) using the code below.

> xyplot(Resid ~ Group)

> ControlResidual <- Resid[Group=="Control"] # Control residuals

> IncentiveResidual <- Resid[Group=="Incentive"] # Incentive residuals

> qqnorm(ControlResidual, ylab="Control Residual", main= "") #normal plot

> qqline(ControlResidual) # adds line

> qqnorm(IncentiveResidual, ylab="Incentive Residual", main= "") # normal plot

> qqline(IncentiveResidual) # add the line

20 CHAPTER 0. WHAT IS A STATISTICAL MODEL?

Group

R
es

id

−20

−10

0

10

Control Incentive

Figure 0.3 (page 10): Residuals from Group Weightloss Means

−2 −1 0 1 2

−
20

−
10

0
10

Theoretical Quantiles

C
on

tr
ol

 R
es

id
ua

l

(a) Normal plot of Control residuals

−2 −1 0 1 2

−
15

−
5

0
5

10
15

Theoretical Quantiles

In
ce

nt
iv

e
R

es
id

ua
l

(b) Normal plot of Incentive residuals

Figure 0.4 (page 10) Normal Probability Plots for Residuals of Weightloss

CHAPTER 1

Simple Linear Regression with R

1.1 The Simple Linear Regression Model

Example 1.1 (page 25): Porsche Prices

We now proceed to use R with the regression chapters of the text . We begin with the example on
Porsche Prices. Here is the code to obtain and plot the data.

Porsche.df <- read.csv(file=file.choose()) # Get the data.

dim(Porsche.df) # Do some basic checks that we have the right data.

[1] 30 3 # 30 rows and 3 columns looks right.

names(Porsche.df) # The names that follow agree with the book.

[1] "Price" "Age" "Mileage"

attach(Porsche.df) # Remember, we use attach to refer more easily to variable names.

plot(Mileage, Price) # The basic scatterplot of interest.

To fit a simple linear regression model we use R’s lm function. The lm function is a function for
fitting the general linear model to a dataset. The presumption is that there is a quantitative
response variable and one or more predictors, which can be quantitative or categorical.

In this call to the lm function, we store the model output into a new variable named Porsche.lm1.
We will soon realize that R has stored more information into Porsche.lm1 than we might initially
suspect.

Porsche.lm1 <- lm(Price ~ Mileage)

abline(Porsche.lm1)

We now add a regression line to the scatterplot using R’s abline function. The abline function
is a general function for adding lines with specified slope and intercept to an exisiting plot. The
standard form of the command uses two arguments—the intercept in position 1 and the slope in

21

22 CHAPTER 1. SIMPLE LINEAR REGRESSION WITH R

position 2. However in our call to abline we do not directly give intercept and slope but instead
hand abline the name of our fitted simple linear regression model, and R magically extracts from
this object the required intercept and slope. This flexibility of dealing with function arguments—
that is, doing the right thing based upon recognizing the nature of the input—is one of R’s many
strengths. The scatterplot with added regression line appears in Figure 1.2.

0 20 40 60 80

20
30

40
50

60
70

80

Mileage

P
ric

e

Figure 1.2 (page 29): Scatterplot of Price versus Mileage with regression line

To carry this discussion a bit further, try the following R commands.

> abline(80, -.7, lty=2) # Add a second, dashed line, which fits less well.

> abline(h=mean(Price),lty=3) # Add a horizontal, dotted line, at the mean Price level.

The first command adds a line with intercept 80 and slope -0.7, a line that runs through the data
but fits the data less well than the regression line. The second command uses the h argument for
the abline function, which gives a short-cut for adding a horizontal line at the level of the mean
of Price. Notice that these two calls to abline also use the lty argument which stands for line
type. There is a code for line types, where 1 is the default solid line, 2 is dashed, 3 is dotted, 4 is
dot-dash, 5 is long dash, and 6 is two dash.

Unpacking an R Object: Porsche.lm1

Common R objects that we will work with a lot will be vectors and data frames. The list is another
object type and should be thought of as an ordered collection of other objects. Think of a list as
sort of a queue at a movie theater, except that members of the queue don’t all have to be, say,
people. The first might be a person, the second a hyena, the third a suitcase full of thousand dollar
bills, the fourth an invitation to a surprise birthday party, etc. Each member of that queue then
has it’s own kind of structure because it is an object of a certain type. The output of a call to

1.1. THE SIMPLE LINEAR REGRESSION MODEL 23

0 20 40 60 80

20
30

40
50

60
70

80

Mileage

P
ric

e

Scatterplot with added lines to illustrate abline

the lm function, as we did above in the Porsche.lm1 <- lm(Price ∼ Mileage) code, is a list.
Consider the following sequence of R code with resulting output.

> is.list(Porsche.lm1)

[1] TRUE

> length(Porsche.lm1)

[1] 12

> is.vector(Porsche.lm1)

[1] FALSE

> names(Porsche.lm1)

[1]"coefficients" "residuals" "effects" "rank" "fitted.values" "assign"

[7]"qr" "df.residual" "xlevels" "call" "terms" "model"

> Porsche.lm1[[1]]

(Intercept) Mileage

71.0904527 -0.5894009

> Porsche.lm1$coefficients

(Intercept) Mileage

71.0904527 -0.5894009

> Porsche.lm1$coef

(Intercept) Mileage

71.0904527 -0.5894009

> is.vector(Porsche.lm1$coef)

[1] TRUE

> length(Porsche.lm1$coef)

[1] 2

24 CHAPTER 1. SIMPLE LINEAR REGRESSION WITH R

The first line is a query function asking R if the object Porsche.lm1 is a list, which it is. Then
we ask for its length and find it is a list of length 12. Just for fun, we asked if Porsche.lm1 is a
vector, which it is not.

It turns out that the 12 objects comprising this list collectively contain all the useful information
we will need about the model, things like the coefficients (slope and intercept), the residuals, the
fitted values, among others.

We then asked for the names of the 12 components of the list, which are coefficients, residuals,
etc. To access a component of a list, one uses double brackets [[]]. The command Porsche.lm1[[1]]
causes R to print out the vector of coefficients—intercept and slope, in that order—which com-
prises the first element of the list. Since it would be cumbersome to have to remember what each
of the 12 components of the list stand for, we see in the Porsche.lm1$coefficients command
that we can just as easily refer to this part with a more transparent identifier and the next line
Porsche.lm1$coef illustrates that we don’t have to write out the entire label “coefficients,” but
just enough of it to uniquely distinguish it from the other components of the list. The last two
commands merely confirm for us that Porsche.lm1$coef is a vector of length 2.

Below we give some code to produce a nice table of the data along with fitted values and residuals.
First is a line of R code for printing a table of the data points along with fitted values and residuals,
using the cbind function. Notice that the first row corroborates the values given in the text. You
might punch some numbers into a hand-held calculator at this point to confirm where the fits and
residuals are coming from. Note: The notation 1:5 in that call to cbind asks R to print out only
rows 1 through 5, since 1:5 is notation for the vector (1,2,3,4,5). Note also that this command
ends with “[1:5,]” which means “produce all columns (for rows 1:5).” Had we written “[1:5,2],” for
example, then we would have gotten only column 2 (the Prices).

> cbind(Mileage,Price,Porsche.lm1$fit,Porsche.lm1$resid)[1:5,]

#print first 5 rows

Mileage Price

1 21.5 69.4 58.41833 10.981667

2 43.0 56.9 45.74621 11.153788

3 19.9 49.9 59.36137 -9.461374

4 36.0 47.4 49.87202 -2.472019

5 44.0 42.9 45.15681 -2.256811

> Porsche.lm1.table <- data.frame(cbind(Mileage,Price,Porsche.lm1$fit,Porsche.lm1$resid))

> names(Porsche.lm1.table)

[1] "Mileage" "Price" "V3" "V4"

> names(Porsche.lm1.table)[c(3,4)] <- c("fits", "residuals")

> head(Porsche.lm1.table)

1.1. THE SIMPLE LINEAR REGRESSION MODEL 25

Mileage Price fits residuals

1 21.5 69.4 58.41833 10.981667

2 43.0 56.9 45.74621 11.153788

3 19.9 49.9 59.36137 -9.461374

4 36.0 47.4 49.87202 -2.472019

5 44.0 42.9 45.15681 -2.256811

6 49.8 36.9 41.73829 -4.838286

The cbind function creates a matrix by concatenating the 4 columns mentioned in the argument.
To tidy up this summary table of fits and residuals, we transform the matrix into a data frame
using the data.frame function. The next line of code asks for the names of the 4 variables in the
data frame, Porsche.lm1.table; notice that the first two are Mileage and Price, but the next
two are default values given by R, namely V3 and V4. We follow up this line with a line that assigns
to these two variables the more transparent names fits and residuals. The head function is a
function, similar to str, that gives a brief overview of the structure of a data frame. While str

lists variables and their types and the first few values, head causes the first few rows of the data
frame to be printed. Either head or str are useful ways to check that a data frame you have
obtained or defined looks like what you think it should look like.

Finally, we note the summary function’s effect on the Porsche.lm1 object. The summary function is
an example of a generic function, which means that the type of output it produces will depend upon
the type of object used as input. In this case, the input object is a regression object. R recognizes
this and produces a standard regression summary table, which looks similar to the Minitab table
in the text.

> summary(Porsche.lm1)

Call:

lm(formula = Price ~ Mileage)

Residuals:

Min 1Q Median 3Q Max

-19.3077 -4.0470 -0.3945 3.8374 12.6758

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.09045 2.36986 30.00 < 2e-16 ***

Mileage -0.58940 0.05665 -10.40 3.98e-11 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 7.17 on 28 degrees of freedom

Multiple R-squared: 0.7945, Adjusted R-squared: 0.7872

26 CHAPTER 1. SIMPLE LINEAR REGRESSION WITH R

F-statistic: 108.3 on 1 and 28 DF, p-value: 3.982e-11

The following example shows that if the input object were a vector instead of a regression object,
R would give a different kind of summary. The summary produced is the five-number summary
plus the mean value. Other R objects will result in other appropriate summaries.

> summary(c(1,2,3,3,4,5,10)) # Here the input is a vector of length 7.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.0 2.5 3.0 4.0 4.5 10.0

1.2 Conditions for a Simple Linear Model: Regression Standard
Error

In Example 1.4 on Porsche Prices we show that the regression standard error is 7.17. We can find
this value in the output from the R command summary(Porsche.lm1) as “Residual standard error:
7.17 on 28 degrees of freedom.”

1.3 Assessing Conditions: Diagnostic plots

The text introduces us to several diagnostic plots for regression, meaning plots involving the residu-
als that help us assess the reasonableness of the regression model conditions. Each is easy to imple-
ment with R using the object created by the lm function, in our example the object Porsche.lm1.

Normal Plots and Histograms of Residuals

We re-create Figures 1.8 and 1.9 using:

> plot(Porsche.lm1$fitted.values,Porsche.lm1$residuals)

> hist(Porsche.lm1$resid)

Two functions produce the normal quantile plot with superimposed line: qqnorm and qqline. Here
is a salient example.

> qqnorm(Porsche.lm1$resid) # Plot residuals vs. theoretical normal quantiles

> qqline(Porsche.lm1$resid) # Fits a straight line to "aid the eye."

Since we will usually follow the normal plot with the aidful fitted line, we can create our own user-
defined function to accomplish both, which we call myqqnorm. Type these lines into R to define the
function, then try it out with the function call myqqnorm(Porsche.lm1$resid). NOTE: To try
out the new function, you should delete the previous graph, because myqqnorm is simply going to
reproduce it, and you want to be clear that it has done so.

1.4. TRANSFORMATIONS AND OTHER RESIDUAL PLOTS 27

myqqnorm <- function(x){

qqnorm(x)

qqline(x)

}

> myqqnorm(Porsche.lm1$resid) #Now, try it out, after deleting previous graph.

1.4 Transformations and Other Residual Plots

Example 1.6: Doctors and Hospitals Example

Let’s use the Doctors and Hospitals example to illustrate using R to get the panoply of residual
plots we use for regression diagnostics.

After obtaining the data, we see our first instance of one of R’s most powerful functions. The
par function helps us control a wide variety of graphical parameters, such as line style, plotting
character, axes, color, and on and on. See Crawley[848-850] for a table of all graphical parameters.
The command par(mfrow = c(2,2)) partitions our graphics window into a 2-by-2 panel of panels,
so we can get 4 graphs on a single window. Note: As a matter of style, after creating the panel of 4
graphs we use par(mfrow=c(1,1)) to return to the default one graph per panel, so that subsequent
work does not stay in the 2-by-2 mode. Note as well, that abline(h=0) adds a horizontal line at
level y = 0, i.e., the x-axis.

> MetroHealth83.df <- read.csv(file=file.choose()) # Get the data.

> MetroHealth.df <- MetroHealth83.df[,c(1,2,4)] # extract the 3 variables

used in Chapter 1 of text

> attach(MetroHealth.df)

> par(mfrow=c(2,2))

> plot(NumHospitals, NumMDs,main="Scatterplot of MDs vs. Hospitals")

> MetroHealth.lm1 <- lm(NumMDs ~ NumHospitals) # fit model

> abline(MetroHealth.lm1) # Add line to scatterplot

> plot(MetroHealth.lm1$fit, MetroHealth.lm1$resid, main="Residuals vs. Fits")

> abline(h=0) # see comment above

> hist(MetroHealth.lm1$resid, main="Histogram of Residuals")

> myqqnorm(MetroHealth.lm1$resid)

> par(mfrow=c(1,1)) # return to single graph window

We have replicated the diagnostic plots from the textbook, the ones that suggest a transformation
of the data. The R code below fits the square-root model and produces the diagnostic plots. (Note:
We suppress these diagnostic plots, which you can find in the text.)

28 CHAPTER 1. SIMPLE LINEAR REGRESSION WITH R

5 15 25

0
60

00

MDs vs. Hospitals

NumHospitals

N
um

M
D

s
0 4000 8000

−
20

00

Residuals vs. Fits

MetroHealth.lm1$fit

M
et

ro
H

ea
lth

.lm
1$

re
si

d

Residuals

MetroHealth.lm1$resid

F
re

qu
en

cy

−2000 1000

0
20

−2 0 2

−
20

00

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figures 1.12(a) (page 41), 1.12(b) (page 41), 1.13(a) (page 41), and 1.13(b) (page 41): Diagnostic
Plots for Metro Health Data (original scale)

> SqrtMDs <- sqrt(NumMDs) # Create the square-rooted variable

> MetroHealth.df <- data.frame(MetroHealth.df,SqrtMDs) # Add it to the data frame

> dim(MetroHealth.df) # Check that it got added

[1] 83 4

> names(MetroHealth.df)

[1] "City" "NumMDs" "NumHospitals" "SqrtMDs" # This looks right

> MetroHealth.lm2 <- lm(SqrtMDs ~ NumHospitals)

> par(mfrow=c(2,2))

> plot(NumHospitals, SqrtMDs)

> abline(MetroHealth.lm2)

> plot(MetroHealth.lm2$fit, MetroHealth.lm2$resid)

> abline(h=0)

> hist(MetroHealth.lm2$resid)

> myqqnorm(MetroHealth.lm2$resid)

> par(mfrow=c(1,1)) # Return to single graph window.

Predicting a Value

The R Code below uses the predict function to predict a value of number of doctors given a value
of the number of hospitals. The first argument of the function is the model to base the prediction
on; the predict function is generic, in that it will react appropriately depending on the class of
the model object given it. Our model object is a “linear model” object, i.e., one created by the lm
function and predict knows what to do with such an object.

1.4. TRANSFORMATIONS AND OTHER RESIDUAL PLOTS 29

The second argument is a data frame giving values of the the explanatory variable(s) that we want
to predict response values at. Multiple values are possible, as the second line of R code illustrates.

The first line defines a data frame called new.data that contains values of the explanatory variable
at which we want to predict response values using the model MetroHealth.lm1. An example in
the text used a value of 18—hypothetically a hospital in Louisville—for the number of hospitals.
We have added a second hypothetical value of 6, just to illustrate that multiple values are possible.

This new data frame becomes the second argument in the second line of code. This line tells the
predict function to use the model MetroHealth.lm1 and make two predictions.

The third line of code asks to predict at the same values of 18 and 6, this time using the model
MetroHealth.lm2. Since this model was for the square-rooted data, we must square the results
to get back to the predicted number of doctors. In both cases, the predictions are less than the
predictions when using the simple linear model on the untransformed data.

new.data <- data.frame(NumHospitals=c(18,6)) # define the data frame to predict at.

predict(MetroHealth.lm1,new=new.data)

1 2

4691.063 1306.953

predict(MetroHealth.lm2,new=new.data)^2

1 2

4422.2007 993.6232

Adding the Fitted Quadratics—Using R to Draw Curves

We conclude this section on diagnostics by showing how R can create the scatterplot in the original
scale with the fitted quadratic superimposed. This code suggests a general approach to fitting or
drawing curves, which we illustrate with a second example. Note the main argument in the plot

function, which puts a title on the plot.

30 CHAPTER 1. SIMPLE LINEAR REGRESSION WITH R

> plot(NumHospitals, NumMDs, main="Doctors vs. Hospitals with Quadratic Fit")

> min(NumHospitals)

[1] 2

> max(NumHospitals)

[1] 32

> xx <- seq(2,32,length=101)

> yy <- (14.033 +2.915*xx)^2

> points(xx,yy,type="l")

Explanation of code: First line reproduces the scatterplot. The second and third lines of R code
ask for the minimum and maximum values of the x-variable, NumHospitals, which we see to be 2
to 32. Then, we set up a new variable that is a sequence of numbers of length 101, running from 2
to 32. We did not print xx, but it equals (2, 2.3, 2.6, 2.9, ..., 31.7, 32). Then, we define the vari-
able yy by the quadratic function that untransforms the line we fit to the square-root-transformed
data. Finally, the last line of R code uses the points function. The points function adds the 101
(xx,yy) points to the plot BUT using the dictates of that third argument type=’l’. Without
that argument we would have seen 101 new open-circle points added to the scatterplot, but the
argument is asking to replace the individual points with a broken line connecting these points. The
value of the type argument here is a lower case, not an upper case, L, and not the numeral 1.
There is nothing magical about 101 in this example, you just want to pick enough points so the
curve looks like a smooth curve and not the succession of line segments, which in reality it is.

Example 1.A: A mathematical function. We can also graph a mathematical function by itself,
not fitted to a scatterplot. Here is an example of code to graph the function y = x2 + x− 1 on the
domain x = [−2, 2].

x <- seq(-2,2,length=101)

y <- x^2 + x -1

plot(x,y,type="l")

abline(h=0, lty = 2) # lty=2 makes a dashed line

1.5 Outliers and Influential Points

Example 1.9: Butterfly Ballot

We will do more with the topic of outliers and influence when we get to more advanced regression,
but the main thing we want to do at this point in our Companion is to replicate the scatterplot
related to the 2000 U.S. Presidential election where different regression lines are superimposed,
depending on whether Palm Beach County is included or not. (This relates to Figure 1.25 in the
text.)

1.5. OUTLIERS AND INFLUENTIAL POINTS 31

−2 −1 0 1 2

−
1

0
1

2
3

4
5

x

y

Example of a mathematical function: simple quadratic

PalmBeach.df <- read.csv(file=file.choose()) # Get the data.

> attach(PalmBeach.df)

> head(PalmBeach.df)

County Buchanan Bush

1 ALACHUA 262 34062

2 BAKER 73 5610

3 BAY 248 38637

4 BRADFORD 65 5413

5 BREVARD 570 115185

6 BROWARD 789 177279

> str(PalmBeach.df)

’data.frame’: 67 obs. of 3 variables:

$ County : Factor w/ 67 levels "ALACHUA","BAKER",..: 1 2 3 4 5 6 7 8 9 10 ...

$ Buchanan: int 262 73 248 65 570 789 90 182 270 186 ...

$ Bush : int 34062 5610 38637 5413 115185 177279 2873 35419 29744 41745 ...

model.with <- lm(Buchanan ~ Bush)

detach() # To clean up the workspace

In the following code, the ! means negation, so the data from NoPB.df has all of the counties
except Palm Beach County:

32 CHAPTER 1. SIMPLE LINEAR REGRESSION WITH R

Create a data frame, NoPB.df, removing Palm Beach County.

> attach(PalmBeach.df)

> NoPB.df <- PalmBeach.df[!County=="PALM BEACH",]

dim(NoPB.df)

[1] 66 3

> attach(NoPB.df)

> model.without <- lm(NoPB.df$Buchanan ~ NoPB.df$Bush)

Now re-create Figure 1.25.

> detach(NoPB.df)

> attach(PalmBeach.df)

> plot(Bush, Buchanan)

> abline(model.with)

> abline(model.without,lty=2)

CHAPTER 2

Inference for Simple Linear
Regression

Much of the discussion of statistical inference in the regression setting focuses on two tables: the
summary table of coefficients and the ANOVA table.
To obtain the summary table of coefficients, use the summary function with the fitted model. The
code and output follow. Compare the output to the Minitab output given in the text.

> Porsche.df <- read.csv(file=file.choose()) # Get the data.

> attach(Porsche.df)

> Porsche.lm1 <- lm(Price ~ Mileage)

> summary(Porsche.lm1)

Call:

lm(formula = Price ~ Mileage)

Residuals:

Min 1Q Median 3Q Max

-19.3077 -4.0470 -0.3945 3.8374 12.6758

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.09045 2.36986 30.00 < 2e-16 ***

Mileage -0.58940 0.05665 -10.40 3.98e-11 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 7.17 on 28 degrees of freedom

Multiple R-squared: 0.7945, Adjusted R-squared: 0.7872

F-statistic: 108.3 on 1 and 28 DF, p-value: 3.982e-11

To obtain the ANOVA table, use the anova function. The code and output follow, and you can

33

34 CHAPTER 2. INFERENCE FOR SIMPLE LINEAR REGRESSION

again compare the results to those given in the text. Notice that R gives us a more precise p-value
than does Minitab and that R eliminates the “total” line of the ANOVA table.

> anova(Porsche.lm1)

Analysis of Variance Table

Response: Price

Df Sum Sq Mean Sq F value Pr(>F)

Mileage 1 5565.7 5565.7 108.25 3.982e-11 ***

Residuals 28 1439.6 51.4

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

To compute confidence intervals for coefficients, use the confint function, as in the following
examples. Notice that we can get confidence intervals for both (or more generally all) coefficients,
or we can specify by number which one(s) we want. We use the level=.90 argument to obtain
90% confidence intervals. Note that we use a decimal level rather than a percentage, so .90 rather
than 90. The default level is, of course, 95%.

> confint(Porsche.lm1, level=.90) # obtain 90% CIs for both coefficients

5 % 95 %

(Intercept) 67.0590139 75.1218916

Mileage -0.6857674 -0.4930345

> confint(Porsche.lm1, 1, level=.90) # just the intercept

5 % 95 %

(Intercept) 67.05901 75.12189

> confint(Porsche.lm1, 2, level=.90) # just the slope

5 % 95 %

Mileage -0.6857674 -0.4930345

The text explains the coefficient of determination or R2 and shows that it is equal to .795 in this
example. One can actually verify that the correlation coefficient, R, can be squared to get this
same value.

> R <- cor(Price, Mileage)

> R

[1] -0.8913484

> R^2

[1] 0.794502

Finally, the section of inference for simple linear regression discusses “intervals for prediction,”
namely the confidence interval and the prediction interval. One obtains these using the R predict

function along with the int argument. We give below the code and output for the example of a
Porsche with 50 thousand miles.

35

First the 95% Confidence Interval:

new.data <- data.frame(Mileage = 50)

predict(Porsche.lm1,new.data, int="confidence")

Here is the output:

fit lwr upr

1 41.62041 38.41535 44.82546

Next the 95% Prediction Interval:

predict(Porsche.lm1,new.data, int="prediction")

fit lwr upr

1 41.62041 26.58711 56.6537

Notice the agreement to the textbook.

One can again use the level argument to obtain something other than 95% confidence levels.
Here is an example of a 90% prediction interval. As expected, it is narrower than the 95%.

predict(Porsche.lm1,new.data, int="prediction", level=.90)

fit lwr upr

1 41.62041 29.13577 54.10504

Graphing Prediction and Confidence Intervals

Figure 2.2 in the text shows a scatterplot of Mileage versus Price for the Porsche data, along with
the fitted regression line and with added confidence bands and prediction bands that graph-
ically present the 95% confidence and prediction interval values at each level of the explanatory
variable, Price.

Below, we give R code for reproducing these graphs. Rather than giving the code for this particular
example only, we will instead give code to define a new function called predict.plots that can be
entered and saved into R and used with future simple linear regression models. Two nuances require
explanation in this code. First, we use a range function call in the plot function call. The result
is to set the ylim argument—which sets a range on the y-axis—to be big enough to encompass all
points of the plot and the bands, so that none of the picture is out of range. Then, we introduce the
matpoints function, which plots the vector x against all columns of the CI or PI matrix, exactly
what we require here. (We could use a sequence of regular points function calls, but our way is
more expedient.) To create Figure 2.2 we then type predict.plots(Mileage,Price).

36 CHAPTER 2. INFERENCE FOR SIMPLE LINEAR REGRESSION

0 20 40 60 80

0
20

40
60

80

x

y

Figure 2.2 (page 78): Confidence bands and prediction bands for Porsche prices

predict.plots <- function(x,y, conf.level=.95) {

x = explanatory variable;

y = response variable.

model <- lm(y~x)

new <- seq(min(x),max(x),length=101)

CI <- predict(model, list(x = new), int="confidence", level=conf.level)

PI <- predict(model, list(x = new), int="prediction", level=conf.level)

plot(x,y,ylim=range(y,PI[,3]))

abline(model) # to obtain solid regression line

points(new,CI[,2],type="l",col=1,lty=2)

points(new,CI[,3],type="l",col=1,lty=2)

points(new,PI[,2],type="l",col=1,lty=3)

points(new,PI[,3],type="l",col=1,lty=3)

}

CHAPTER 3

Multiple Regression

Our R companion now moves on to multiple regression and other regression topics beyond simple
linear. These regression topics introduce us to several new ideas, for which we will want to learn
the appropriate R syntax. In this section, we will describe how to use R to help with:

• Indicator variables,

• Adjusted R2,

• Interaction terms,

• Coded scatterplots,

• Matrix plots,

• Correlation matrices,

• Variance inflaction factors,

• Polynomial regression, and

• Nested F-tests.

Conceptually, of course, there is more to multiple linear regression than this list implies, but much
of the R we learned for simple linear regression works the same way in the multiple-predictor con-
text. For example, the lm function still fits the model, summary and anova still provide important
tabular output, the model object still embodies important components such as fitted values or
residuals, and the predict function still helps with prediction and its related confidence or predic-
tion intervals. We will proceed to explicate the R items in the list above by using R to reproduce
solutions to several of the multiple regression examples from the text.

Example 3.1: NFL Winning Percentage

> NFLStandings2007.df <- read.csv(file=file.choose()) # Get the data!

> attach(NFLStanding2007.df)

37

38 CHAPTER 3. MULTIPLE REGRESSION

> plot(PointsFor,WinPct)

> plot(PointsAgainst,WinPct)

These two commands produce Figures 3.1(a) and (b) without the regression lines being included.

3.1 Multiple Linear Regression Model

Example 3.2: NFL Winning Percentage (continued)

The commands NLF.lm1 <- lm(WinPct ∼ PointsFor + PointsAgainst) and summary(NFL.lm1)
produce the fitted regression model as shown in the book, including the t-ratio of −5.55 for testing
that there is no linear relationship between WinPCT and PointsAgainst in the model that also
includes PointsFor.

> NLF.lm1 <- lm(WinPct ~ PointsFor + PointsAgainst)

> summary(NFL.lm1)

Call:

lm(formula = WinPct ~ PointsFor + PointsAgainst)

Residuals:

Min 1Q Median 3Q Max

-0.15857 -0.05318 -0.01259 0.07360 0.12962

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4172230 0.1394480 2.992 0.00561 **

PointsFor 0.0017662 0.0001870 9.445 2.37e-10 ***

PointsAgainst -0.0015268 0.0002751 -5.551 5.50e-06 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.07298 on 29 degrees of freedom

Multiple R-squared: 0.8844,Adjusted R-squared: 0.8764

F-statistic: 110.9 on 2 and 29 DF, p-value: 2.598e-14

3.2 Assessing a Multiple Regression Model

Example 3.5: NFL Winning Percentage (continued)

From summary(NFL.lm1) we see that R2 is 0.8844, which R calls “Multiple R-squared.” We could
also have found this by first having R compute the fitted values from the regression and then finding
the correlation of those values with the response variable (WinPct) and squaring.

3.3. COMPARING TWO REGRESSION LINES 39

> fits <- NFL.lm1$fitted

> cor(WinPct,fits)^2

Example 3.6: NFL Winning Percentage (continued)

The adjusted R2 is given in the output from the summary(NFL.lm1) command as 0.8764.

Example 3.7: NFL Winning Percentage (continued)

To make predictions as well as confidence intervals and prediction intervals for those predictions
we first create a new data frame with numbers for each of the predictor variables; then we use the
predict command as in Chapter 2.

> newdata <- data.frame(PointsFor=400,PointsAgainst=350)

> predict.lm(NFL.lm1,newdata, int="confidence")

fit lwr upr

1 0.5893095 0.5555032 0.6231158

> predict.lm(NFL.lm1,newdata, int="prediction")

fit lwr upr

1 0.5893095 0.4362648 0.7423541

3.3 Comparing Two Regression Lines

Example 3.9: Growth Rate of Kids

We begin with the example of comparing rates of weight gain for boys and girls using a sample of
198 children and observing them from about age 8 to age 18. (Ages are given in months in the
dataset.) Here we use a model with the sex of the child as a binary predictor in a model that
also includes the child’s age. Recall that by considering an interaction term we can model any
differential rates of weight gain between sexes.

> Kids198.df <- read.csv(file=file.choose()) # Get the data!

> attach(Kids198.df)

> plot(Age,Weight,pch=16-15*Sex) # Sex=0 (boys) gives plot symbol 16;

> legend(locator(1),c("boys","girls"),pch=c(16,1)) # Sex=1 (girls) gives symbol 1

> abline(lm(Weight[Sex==0] ~ Age[Sex==0])) # Boys are coded as 0.

> abline(lm(Weight[Sex==1] ~ Age[Sex==1]),lty=2) # Girls are coded as 1.

Explanation: After attaching the data frame Kids198.df, we reproduce the scatterplot. We use the
legend function to add the legend. The locator(1) argument suspends command line mode,

40 CHAPTER 3. MULTIPLE REGRESSION

100 120 140 160 180 200 220

50
10

0
15

0
20

0

Age

W
ei

gh
t

boys
girls

Figure 3.9 (page 114): Compare regression lines by sex

asking the user to select where in the plot to add the legend. The user drags the cursor over into
the graph region and clicks at the position where he or she wants the upper left-hand corner of the
legend to be. The second argument of legend gives the point labels (boys and girls; note the quote
marks), and the pch argument gives the symbols relating to labels; here pch=16 represents a solid
circle symbol and pch=1 an open circle.

Finally, we add the two regression lines, solid (default line style) for boys and dashed (lty=2) for
girls.

We now fit the linear model of Weight on Age and Sex with an interaction term, as shown in the
text, save for using Sex as the binary for sex rather than creating the indicator IGirl. In R we
designate the interaction term by Age:Sex which tells R to include the point-wise product of the
two numeric variables Age and Sex. A more cryptic notational option exists; the model statement
below could be replaced by lm(Weight ∼ Age*Sex, which automatically includes the interaction
term along with lower-order terms (in this case, the linear terms and the intercept).

> WeightAge.lm1 <- lm(Weight ~ Age + Sex + Age:Sex)

> summary(WeightAge.lm1)

Call:

lm(formula = Weight ~ Age + Sex + Age:Sex)

3.4. NEW PREDICTORS FROM OLD 41

Residuals:

Min 1Q Median 3Q Max

-46.884 -12.055 -2.782 10.185 58.581

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -33.69254 10.00727 -3.367 0.000917 ***

Age 0.90871 0.06106 14.882 < 2e-16 ***

Sex 31.85057 13.24269 2.405 0.017106 *

Age:Sex -0.28122 0.08164 -3.445 0.000700 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 19.19 on 194 degrees of freedom

Multiple R-squared: 0.6683, Adjusted R-squared: 0.6631

F-statistic: 130.3 on 3 and 194 DF, p-value: < 2.2e-16

3.4 New Predictors from Old

Example 3.10: Perch Weights

We give below the R code for several pieces of the Perch Weight example in the text. The pairs

function is new and produces a matrix plot, that is, a plot of all possible pairwise scatterplots of the
variables given in the model statement (in the order given). We might have typed pairs(Perch.df)

except that would have included the Obs variable in the plot, which is not useful. We use the
cor function, which computes correlation coefficients between pairs of variables. By entering the
argument cbind(Weight,Length,Width) we have given the function a matrix with 3 columns,
causing the calculation of all pairwise correlation coefficients. Note the use of the round function,
to 3 decimal places, to make the output more appealing.

> Perch.df <- read.csv(file=file.choose()) # Get the data!

> dim(Perch.df)

[1] 56 4

> names(Perch.df)

[1] "Obs" "Weight" "Length" "Width"

> attach(Perch.df)

> pairs(~ Weight + Length + Width) # produces a matrix plot of the 3 variables

> round(cor(cbind(Weight,Length,Width)),3) # pairwise correlations, rounded.

42 CHAPTER 3. MULTIPLE REGRESSION

Weight

10 20 30 40

0
40

0
80

0

10
20

30
40

Length

0 400 800 2 3 4 5 6 7 8

2
4

6
8

Width

Matrix plot for Perch Weights

Weight Length Width

Weight 1.000 0.960 0.964

Length 0.960 1.000 0.975

Width 0.964 0.975 1.000

Below is code for the the first two models the text discusses for these data. The first model—
Perch.lm1—fits only linear terms for Length and Width, while the second model—Perch.lm2—
adds an interaction term.

> Perch.lm1 <- lm(Weight ~ Length + Width)

> summary(Perch.lm1)

Call:

lm(formula = Weight ~ Length + Width)

Residuals:

Min 1Q Median 3Q Max

-113.86 -59.02 -23.29 30.93 299.85

3.4. NEW PREDICTORS FROM OLD 43

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -578.758 43.667 -13.254 < 2e-16 ***

Length 14.307 5.659 2.528 0.014475 *

Width 113.500 30.265 3.750 0.000439 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 88.68 on 53 degrees of freedom

Multiple R-squared: 0.9373, Adjusted R-squared: 0.9349

F-statistic: 396.1 on 2 and 53 DF, p-value: < 2.2e-16

> Perch.lm2 <- lm(Weight ~ Length + Width + Length:Width)

> summary(Perch.lm2)

Call:

lm(formula = Weight ~ Length + Width + Length:Width)

Residuals:

Min 1Q Median 3Q Max

-140.106 -12.226 1.230 8.489 181.408

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 113.9349 58.7844 1.938 0.058 .

Length -3.4827 3.1521 -1.105 0.274

Width -94.6309 22.2954 -4.244 9.06e-05 ***

Length:Width 5.2412 0.4131 12.687 < 2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 44.24 on 52 degrees of freedom

Multiple R-squared: 0.9847, Adjusted R-squared: 0.9838

F-statistic: 1115 on 3 and 52 DF, p-value: < 2.2e-16

Recall that both model objects are lists of length 12, components of which include constituents for
diagnostic plots. For example:

> names(Perch.lm1)

[1] "coefficients" "residuals" "effects" "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "xlevels" "call" "terms" "model"

This is a reasonable time to introduce a feature of R’s that gives easy access to regression assessment
plots. If you simply enter the single command:

44 CHAPTER 3. MULTIPLE REGRESSION

plot(Perch.lm1)

R will give you a succession of 4 plots involving residuals, including two we have discussed in both
the Companion and the text: residuals versus fitted values and a normal plot of the residuals.

This command is another instance of R being flexible in implementation of a function—here the
plot function—that recognizes the input object as being a regression object and reacts appropri-
ately.

The perch data also provide opportunity to illustrate two other important regression topics: the
Nested F-test and polynomial models. Below we fit a third model to these data, one also given in
the text, the so-called “second-order model.” Notice the agreement of the output with that given
in the text.

Notational aside We move now to Example 3.12. The model statement for Perch.lm3 con-
tains an operator we have not seen yet in the Companion, the I operator. As mentioned above,
the model notation in R uses the * symbol in a special way: not as the multiplication operation
for two variables, but as a way of signaling the inclusion of a model with interaction term along
with linear terms (that is, the terms marginal to the interaction term). While R admits a special
notation—Length:Width—to denote the product of two numeric variables, it also provides the I

operator to “protect” a mathematical operator, such as * that would otherwise be interpreted non-
mathematically on the right-hand side of a model statement. Thus, an optional way to write our
second model above is Perch.lm2 ∼ Length + Width + I(Length*Width).

Without the use of I in the model statement (below) for Perch.lm3, the term for Length2 would
be interpreted as the interaction of Length with itself, which would reduce to just Length; likewise
for Width2. This would give a model equivalent to Perch.lm2. (Try it and see!) But with the
I() notation, R interprets the term in a mathematical sense, thus fitting the square of length, as
desired in this case.

> Perch.lm3 <- lm(Weight ~ Length + Width + I(Length^2) +

+ I(Width^2) + Length:Width)

> summary(Perch.lm3)

Call:

lm(formula = Weight ~ Length + Width + I(Length^2) + I(Width^2) +

Length:Width)

Residuals:

Min 1Q Median 3Q Max

-117.175 -11.904 2.822 11.556 157.596

3.5. CORRELATED PREDICTORS AND VARIANCE-INFLATION FACTORS 45

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 156.3486 61.4152 2.546 0.0140 *

Length -25.0007 14.2729 -1.752 0.0860 .

Width 20.9772 82.5877 0.254 0.8005

I(Length^2) 1.5719 0.7244 2.170 0.0348 *

I(Width^2) 34.4058 18.7455 1.835 0.0724 .

Length:Width -9.7763 7.1455 -1.368 0.1774

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 43.13 on 50 degrees of freedom

Multiple R-squared: 0.986, Adjusted R-squared: 0.9846

F-statistic: 704.6 on 5 and 50 DF, p-value: < 2.2e-16

One can use this example as a guide for fitting polynomial regression models or, more generally,
models with some polynomial terms.

3.5 Correlated Predictors and Variance-Inflation Factors

Example 3.15: Diamond Prices

The R code and output below indicate fitting the model, given in the text, for predicting the price
of a diamond from its weight (in carats) and the depth of the cut. This code also shows how to
obtain variance-inflation factors in R. The vif function resides in an R library called car; hence
the line library(car).

> Diamonds.df <- read.csv(file=file.choose())

#obtain the data set; R allows you to search for it.

> attach(Diamonds.df)

> Diamond.lm <- lm(TotalPrice ~ Carat + I(Carat^2) + Depth)

> summary(Diamond.lm)

Call:

lm(formula = TotalPrice ~ Carat + I(Carat^2) + Depth)

Residuals:

Min 1Q Median 3Q Max

-11166.72 -713.88 -52.67 563.94 11263.69

46 CHAPTER 3. MULTIPLE REGRESSION

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6343.09 1436.49 4.416 1.35e-05 ***

Carat 2950.04 736.11 4.008 7.51e-05 ***

I(Carat^2) 4430.36 254.65 17.398 < 2e-16 ***

Depth -114.08 22.66 -5.034 7.74e-07 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2056 on 347 degrees of freedom

Multiple R-squared: 0.9308, Adjusted R-squared: 0.9302

F-statistic: 1555 on 3 and 347 DF, p-value: < 2.2e-16

> library(car) # Need the car library for the vif function

Attaching package: ’car’

The following object(s) are masked _by_ ’.GlobalEnv’:

subsets

> vif(Diamond.lm)

Carat I(Carat^2) Depth

10.942252 10.718736 1.117426

3.6 The Nested F-test and Taking Time for an “R Moment”

The text illustrates the Nested F-test using the models Perch.lm2 and Perch.lm3.

We take Perch.lm3, the second-order model, as our “full model” and compare it to Perch.lm2,
the model with linear terms and the interaction term, which becomes our “reduced” model. Recall
the formula for the F-statistic (our test statistic) is

F =
(SSModelfull − SSModelreduced)/# predictors tested

SSEfull/(n− k − 1)

To obtain the model sums of squares we can use the anova function as the code below illustrates.

REDUCED MODEL:

> anova(Perch.lm2)

Analysis of Variance Table

3.6. THE NESTED F-TEST AND TAKING TIME FOR AN “R MOMENT” 47

Response: Weight

Df Sum Sq Mean Sq F value Pr(>F)

Length 1 6118739 6118739 3126.571 < 2.2e-16 ***

Width 1 110593 110593 56.511 7.416e-10 ***

Length:Width 1 314997 314997 160.958 < 2.2e-16 ***

Residuals 52 101765 1957

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Notice that we can print out just the set of sums of squares

from the ANOVA table using the [[2]] notation.

> anova(Perch.lm2)[[2]]

[1] 6118739.4 110592.9 314997.3 101764.7

FULL MODEL:

> anova(Perch.lm3)

Analysis of Variance Table

Response: Weight

Df Sum Sq Mean Sq F value Pr(>F)

Length 1 6118739 6118739 3289.6413 < 2.2e-16 ***

Width 1 110593 110593 59.4585 4.667e-10 ***

I(Length^2) 1 314899 314899 169.3002 < 2.2e-16 ***

I(Width^2) 1 5381 5381 2.8932 0.09517 .

Length:Width 1 3482 3482 1.8719 0.17737

Residuals 50 93000 1860

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

So SSModelreduced = 6118739+110593+314997 = 6544329 and SSModelfull = 6118739+110593+
314899+ 5381+ 3482 = 6553094, and the difference is 8765 = 6118739− 6544329. One can equiva-
lently get this value as the difference in the Sum of Squares for Residuals, 101765− 93000 = 8765.
We note that this value of 8765 is a rounded value (the text actually has 8764 for its rounded value).

We end our discussion of nested F-test with an “R moment” by which we mean an opportunity to
be reminded of the power and wonder of R. The above discussion illustrates that with what we know
to this point we can calculate the F-test, but as is so often the case with R, there is another—need
we say “easier”?—way, using the same anova function used above. In general, the command line
anova(reducedmodel, fullmodel) does the calculation in one fell swoop. It would be a sign of
gaining R experience to find this unsurprising. R often, if not usually, contains a function that will
perform an operation that is frequently encountered in the statistical world. Below is the R code
for the example at hand.

48 CHAPTER 3. MULTIPLE REGRESSION

> anova(Perch.lm2, Perch.lm3)

Analysis of Variance Table

Model 1: Weight ~ Length + Width + Length:Width

Model 2: Weight ~ Length + Width + I(Length^2) + I(Width^2) + Length:Width

Res.Df RSS Df Sum of Sq F Pr(>F)

1 52 101765

2 50 93000 2 8764.6 2.3561 0.1052

CHAPTER 4

Additional Regression Topics

We now illustrate R code required for the various additional regression topics from Chapter 4 of
the text by using many of the same examples given in that chapter.

4.1 Added Variable Plots

Example 4.1: House Prices

First, we create with R the added variable plots. We begin with the code for getting the data and
fitting the linear model of Price on the two predictors of Lot and Size, which are the lot size and
the house size. We also confirm that the correlation between the two predictors is 0.716.

> Houses.df <- read.csv(file=file.choose()) # Get the data!

> names(Houses.df)

[1] "Price" "Size" "Lot"

> attach(Houses.df)

> Houses.lm1 <- lm(Price ~ Lot + Size)

> summary(Houses.lm1)

Residuals:

Min 1Q Median 3Q Max

-79532 -28464 3713 21450 73507

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34121.649 29716.458 1.148 0.2668

Lot 5.657 3.075 1.839 0.0834 .

Size 23.232 17.700 1.313 0.2068

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

49

50 CHAPTER 4. ADDITIONAL REGRESSION TOPICS

Residual standard error: 47400 on 17 degrees of freedom

Multiple R-squared: 0.5571, Adjusted R-squared: 0.505

F-statistic: 10.69 on 2 and 17 DF, p-value: 0.000985

> cor(Price, Lot)

[1] 0.7157072

Next, we create the added variable plot for Size after Lot. This plot shows the relationship between
the unexplained variability in Price fit to Lot (Error1 below) to the variability in Size that cannot
be explained by Lot (Error2 below).

> Price.Lot.lm <- lm(Price ~ Lot)

> Error1 <- Price.Lot.lm$resid

> Size.Lot.lm <- lm(Size ~ Lot)

> Error2 <- Size.Lot.lm$resid

> Error1.Error2.lm <- lm(Error1 ~ Error2)

> Error1.Error2.lm

Call:

lm(formula = Error1 ~ Error2)

Coefficients:

(Intercept) Error2

1.597e-12 2.323e+01

> plot(Error2, Error1, main="Added Variable Plot")

> abline(Error1.Error2.lm)

Alternatively—as you might by now have anticipated—there is an added variable function in R that
does the task in a single function call. The function is in the car library and is called avPlots.
We illustrate it below, producing the same plot we just constructed. The output gives both added
variable plots: Lot after Size and then Size after Lot. Note the col=1 argument, which changes
the color to black, where the default is red.

> library(car)

> avPlots(Houses.lm1, col=1)

4.2. TECHNIQUES FOR CHOOSING PREDICTORS 51

−500 0 500 1000

−
50

00
0

0
50

00
0

Added Variable Plot

Error2

E
rr

or
1

Figure 4.3 (page 167): Added Variable Plot for adding Size to Lot when predicting Price

−6000 −2000 2000 6000

−
1e

+
05

−
5e

+
04

0e
+

00
5e

+
04

1e
+

05

Lot | others

P
ric

e
 |

ot
he

rs

−500 0 500 1000

−
50

00
0

0
50

00
0

Size | others

P
ric

e
 |

ot
he

rs

Added−Variable Plots

Added Variable Plot for Houses data using avPlots

4.2 Techniques for Choosing Predictors

Example 4.2: The GPA Data

We now illustrate R code for using automated procedures for model selection, using the same
dataset the text uses. After getting the data and attaching it, we ask for variable names. To
replicate the matrix scatterplot in the text, we note that the variables we want in the plot—GPA,
HSGPA, SATV, SATM, HU, and SS—are variables 1, 2, 3, 4, 6, and 7 among the 10 variables in

52 CHAPTER 4. ADDITIONAL REGRESSION TOPICS

the dataset. (We don’t want the binary variables in the matrix plot.) Therefore, the call to pairs

subsets out these columns from the GPA data frame.

> GPA.df <- read.csv(file=file.choose())

> attach(GPA.df)

> names(GPA.df)

[1] "GPA" "HSGPA" "SATV" "SATM" "Male"

[6] "HU" "SS" "FirstGen" "White" "CollegeBound"

> pairs(GPA.df[,c(1,2,3,4,6,7)])

GPA

2.5 4.0 500 800 0 15

2.
0

4.
0

2.
5

4.
0

HSGPA

SATV

30
0

70
0

50
0

80
0

SATM

HU

0
30

2.0 4.0

0
15

300 700 0 30

SS

Scatterplot matrix for first year GPA data

We compare GPAs for the values of our 4 binary predictors using boxplots. We use par to set up
the graphics window as a 2-by-2 array of 4 graph panels. We then use 4 boxplot function calls,
using the main argument to add a title and using the horizontal argument to align the boxplots
horizontally, the default being vertically. Note that R orders the plots differently from the order
in the textbook, which come from Minitab.

> par(mfrow=c(2,2)) # Set graphics window to a 2-by-2 array of 4 panels.

> boxplot(GPA ~ Male, main="1=male; 0=female",horizontal=TRUE)

> boxplot(GPA ~ FirstGen, main="1=first generation; 0=not", horizontal=TRUE)

4.2. TECHNIQUES FOR CHOOSING PREDICTORS 53

> boxplot(GPA ~ White, main="1=white; 0=others", horizontal=TRUE)

> boxplot(GPA ~ CollegeBound, main="1=more than half to college", horizontal=TRUE)

> par(mfrow=c(1,1)) # set graphics window back to one panel

0
1

2.0 2.5 3.0 3.5 4.0

1=male; 0=female

0
1

2.0 2.5 3.0 3.5 4.0

1=first generation; 0=not
0

1

2.0 2.5 3.0 3.5 4.0

1=white; 0=others
0

1

2.0 2.5 3.0 3.5 4.0

1= more than half to college

Figure 4.5 (page 170): GPA versus categorical predictors

To obtain a best subsets analysis, we use a function in the leaps library called regsubsets. We
give the appropriate code and output below. Let’s explain the code, line by line. First, we fit
the same model first fit in the textbook. We suppress the summary table in the second line, but
you can check that it replicates exactly that found in the book. In the third line we fit the model
that includes all predictors, including the CollegeBound indicator, which is highly non-significant.
Notice here we use the compact option for specifying the model: GPA ∼ . tells R to regress GPA
on all predictors. If you look at the summary table, you will notice it closely resembles the first
summary because of the lack of significance of CollegeBound.

We then call up the leaps library, that contains the critical function: regsubsets. We then define
the matrix X, whose columns form the set of predictors—in this case all columns of GPA.df except
that first column; we then define Y to be our response variable, that is, the first column of our data
frame. In the eighth line we use the regsubsets function that extracts a best subsets analysis
of our predictors with our response. The nvmax argument constrains models to have 8 or fewer

54 CHAPTER 4. ADDITIONAL REGRESSION TOPICS

variables; the nbest argument constrains output to report the 2 best models for each number of
variables. We have assigned the summary of the regsubsets call to a variable called out and we
then summarize that object, which is a list of length 8, the pieces of which will become important
for what follows.

The which component is the guts of the summary table; each line corresponds to a model with 1
to 8 variables. There are 17 lines because there is only one model with all 8 predictors (obviously).
We place these 17 lines into an object called Subsets. We see these 17 lines in the textbook exam-
ple, but we won’t get information such as R2 or Mallow’s Cp unless we access other pieces from out.

Subsequent lines pick off the R2, adjusted R2, and Mallow’s Cp quantities (which we round for
more graceful presentation), and the final line of code makes a summary table that replicates the
information that Minitab gave us in the textbook example.

> full <- lm(GPA ~ HSGPA + SATV + Male + HU + SS + White, data=GPA.df)

> summary(full) # we suppress the output

> full <- lm(GPA ~ ., data=GPA.df) # notice the short way to specify the model

> summary(full) # we suppress the output, but it agrees with Minitab’s

> library(leaps) # leaps library contains the regsubsets function

> out=summary(regsubsets(GPA~.,nbest=2,data=GPA.df))

> Subsets <- out$which

> R2 <- round(100*out$rsq,1)

> R2adj <- round(100*out$adjr2,1)

> Cp <- round(out$cp,1)

> cbind(as.data.frame(Subsets),R2,R2adj,Cp)

(We have suppressed the output, which agrees with the Minitab

output in the text.)

To obtain a backward elimination calculation we can use the step function. In the code below,
notice that we first must fit the full model—that is the model that uses all 9 predictors—and this
full model becomes the input to the step function.

Below the code comes the output. Because step is using the AIC criterion to eliminate variables,
rather than p-values, the results differ from the Minitab results the text presents. The final model
given by R includes predictors HSGPA, SATV, HU, SS, and White, which is the penultimate model
Minitab gives, before eliminating SS on its final iteration.

One can also use step to perform forward selection, by setting the direction argument to forward.
Try help(step) to get more explanation of this function.

> attach(GPA.df)

> full <- lm(GPA ~ HSGPA+SATV+SATM+Male+HU+SS+FirstGen+White+CollegeBound)

4.2. TECHNIQUES FOR CHOOSING PREDICTORS 55

> full <- lm(GPA ~ ., data= GPA.df)

this is an alternative to the first 2 lines

> step(full)

Start: AIC=-410.16

GPA ~ HSGPA + SATV + SATM + Male + HU + SS + FirstGen + White +

CollegeBound

Df Sum of Sq RSS AIC

- SATM 1 0.0053 30.724 -412.12

- CollegeBound 1 0.0067 30.726 -412.11

- FirstGen 1 0.1031 30.822 -411.42

- Male 1 0.1052 30.824 -411.41

- SS 1 0.2556 30.975 -410.34

<none> 30.719 -410.16

- SATV 1 0.3309 31.050 -409.81

- White 1 1.1545 31.873 -404.08

- HU 1 2.4409 33.160 -395.41

- HSGPA 1 6.4345 37.154 -370.51

Step: AIC=-412.12

GPA ~ HSGPA + SATV + Male + HU + SS + FirstGen + White + CollegeBound

Df Sum of Sq RSS AIC

- CollegeBound 1 0.0065 30.731 -414.07

- FirstGen 1 0.1072 30.832 -413.36

- Male 1 0.1421 30.866 -413.11

- SS 1 0.2503 30.975 -412.34

<none> 30.724 -412.12

- SATV 1 0.4532 31.178 -410.91

- White 1 1.1778 31.902 -405.88

- HU 1 2.4567 33.181 -397.27

- HSGPA 1 6.5762 37.301 -371.64

Step: AIC=-414.07

GPA ~ HSGPA + SATV + Male + HU + SS + FirstGen + White

56 CHAPTER 4. ADDITIONAL REGRESSION TOPICS

Df Sum of Sq RSS AIC

- FirstGen 1 0.1129 30.844 -415.27

- Male 1 0.1469 30.878 -415.03

- SS 1 0.2470 30.978 -414.32

<none> 30.731 -414.07

- SATV 1 0.4677 31.199 -412.77

- White 1 1.1713 31.902 -407.88

- HU 1 2.4506 33.181 -399.27

- HSGPA 1 6.7560 37.487 -372.55

Step: AIC=-415.27

GPA ~ HSGPA + SATV + Male + HU + SS + White

Df Sum of Sq RSS AIC

- Male 1 0.1534 30.997 -416.18

- SS 1 0.2815 31.125 -415.28

<none> 30.844 -415.27

- SATV 1 0.5898 31.434 -413.12

- White 1 1.2934 32.137 -408.27

- HU 1 2.8154 33.659 -398.14

- HSGPA 1 6.6441 37.488 -374.55

Step: AIC=-416.18

GPA ~ HSGPA + SATV + HU + SS + White

Df Sum of Sq RSS AIC

<none> 30.997 -416.18

- SS 1 0.2951 31.292 -416.11

- SATV 1 0.7005 31.698 -413.29

- White 1 1.3133 32.310 -409.10

- HU 1 2.7987 33.796 -399.25

- HSGPA 1 6.4968 37.494 -376.51

Call:

lm(formula = GPA ~ HSGPA + SATV + HU + SS + White, data = GPA.df)

Coefficients:

(Intercept) HSGPA SATV HU SS White

0.5684876 0.4739983 0.0007481 0.0167447 0.0077474 0.2060408

4.3. IDENTIFYING UNUSUAL POINTS IN REGRESSION 57

4.3 Identifying Unusual Points in Regression

Example 4.5: More Butterfly Ballots

The textbook introduces these quantities for identifying unusual points in a regression analysis:

• Leverage,

• Standardized and studentized residuals, and

• Cook’s distance.

All of these quantities are available through the ls.diag function, the output of which can be
used to identify moderately unusual or very unusual points according to the summary table in the
text, which we reproduce below. Recall that k is the number of predictors and n is the number of
cases.

Statistic Moderately unusual Very unusual

Leverage, hi above 2(k + 1)/n above 3(k + 1)/n

Standardized residual beyond ±2 beyond ±3

Studentized residual beyond ±2 beyond ±3

Cook’s D above 0.5 above 1.0

For this example, we return to the PalmBeach.df data frame and form the model that regresses
Buchanan on Bush; we name the model PalmBeach.lm. We obtain a collection of regression diag-
nostics using the code below. The result of the call to ls.diag is a list of 8 objects that includes
the hat matrix entries (i.e., the hi values), standardized residuals, studentized residuals, and Cook’s
distance, labeled respectively hat, std.res, stud.res, and cooks in the output. (Note: You can
get a fuller explanation of all components of the list by typing help(ls.diag).)

> attach(PalmBeach.df)

> PalmBeach.lm <- lm(Buchanan ~ Bush)

> PalmBeach.diag <- ls.diag(PalmBeach.lm)

> summary(PalmBeach.diag)

Length Class Mode

std.dev 1 -none- numeric

hat 67 -none- numeric

std.res 67 -none- numeric

stud.res 67 -none- numeric

cooks 67 -none- numeric

dfits 67 -none- numeric

correlation 4 -none- numeric

std.err 2 -none- numeric

cov.scaled 4 -none- numeric

cov.unscaled 4 -none- numeric

58 CHAPTER 4. ADDITIONAL REGRESSION TOPICS

To replicate the textbook’s output that identifies the counties that exceed the threshold of hi > 6/n
you can type in this code:

> PalmBeach.df[PalmBeach.diag$hat > 6/67,] # We want all columns that satisfy

the row condition, thus we use the

wild card convention of blank space

after the comma.

County Buchanan Bush

6 BROWARD 789 177279

13 DADE 561 289456

29 HILLSBOROUGH 836 176967

52 PINELLAS 1010 184312

To obtain those cases that exceed either the hi > 6/n threshold or the threshold of the standardized
residuals exceeding ±2, we can use the following code. Notice the use of the | symbol to denote the
logical “or.”

in the first two lines, we take the set of all subscripts---1, 2, ..., 67---

and select out only those subscripts we want to look at. The 67 subscripts

correspond to the 67 Florida counties.

> id <- (1:67)[PalmBeach.diag$hat > 6/67 | abs(PalmBeach.diag$std.res) > 2]

> id

[1] 6 13 29 50 52

> results <- cbind(PalmBeach.df[id,],PalmBeach.lm$fit[id],

+ PalmBeach.lm$resid[id],PalmBeach.diag$std.res[id])

> names(results) <- c("County","Buchanan","Bush","Fits",

+ "Resids","Stand. Resids")

> results

County Buchanan Bush Fits Resids Stand. Resids

6 BROWARD 789 177279 916.9402 -127.94023 -0.3807500

13 DADE 561 289456 1468.4953 -907.49526 -3.0591800

29 HILLSBOROUGH 836 176967 915.4062 -79.40618 -0.2362617

50 PALM BEACH 3407 152846 796.8074 2610.19263 7.6510719

52 PINELLAS 1010 184312 951.5203 58.47972 0.1749128

Finally, here is code to replicate Table 4.1 of unusual cases in the perch weights multiple regression
example. In this example, Perch.df is the perch weight data frame, with variables Length, Width,
and Weight, and Perch.lm2 is the regression model of Weight on Length, Width, and the interaction
term Length:Width.

4.4. CODING CATEGORICAL PREDICTORS 59

> Perch.diag <- ls.diag(Perch.lm2)

> id <- (1:56)[Perch.diag$hat > 8/56 | abs(Perch.diag$std.res) > 2]

> id

[1] 1 2 40 50 52 55 56

> StRes <- round(Perch.diag$std.res[id],2)

> Hats <- round(Perch.diag$hat[id],3)

> Cooks <- round(Perch.diag$cooks[id],3)

> cbind(Perch.df[id,c(3,4,2)],StRes,Hats,Cooks)

Length Width Weight StRes Hats Cooks

1 8.8 1.4 5.9 -0.28 0.431 0.015

2 14.7 2.0 32.0 0.11 0.153 0.001

40 37.3 7.8 840.0 1.96 0.363 0.547

50 42.4 7.5 1015.0 2.16 0.078 0.098

52 44.6 6.9 1100.0 4.37 0.121 0.655

55 46.0 8.1 1000.0 -3.44 0.151 0.525

56 46.6 7.6 1000.0 -2.17 0.143 0.196

4.4 Coding Categorical Predictors

The file ThreeCars includes indicator variables Porsche, Jaguar, and BMW already created. If this
were not true we would use the R command

> Porsche <- as.numeric(CarType=="Porsche")

to create the indicator variable for Porsche and likewise for Jaguar and BMW.

If we wanted to produce the first of the predictions and intervals found in the text, we would first
fit the regression model with the command

> threecars.lm1=lm(Price~Mileage+Porsche+Jaguar)

and then create a (tiny) data frame for a Porsche with 50,000 miles using

> newx <- data.frame(Mileage=50,Porsche=1,Jaguar=0,BMW=0)

Finally, we get the prediction and the confidence interval with

> predict(threecars.lm1,newx,int="confidence")

60 CHAPTER 4. ADDITIONAL REGRESSION TOPICS

4.5 Randomization Test for a Relationship

Example 4.9: Predicting GPAs with SAT Scores

Here is an R script for carrying out the randomization test (also called a permutation test) of the
null hypothesis that the population correlation is zero.

SATGPA.df <- read.csv(file=file.choose()) #get the data!

attach(SATGPA.df)

cor(VerbalSAT,GPA) #should produce .2444543 as the sample r

x <- VerbalSAT

y <- GPA

originalr <- cor(x,y)

NEWy <- sample(GPA) #permutes the 24 GPA values

cor(x,NEWy) #get the permutation cor value

#We might want to repeat this a few times to see how the correlations vary

#now let’s do this many times

N <- 1000 #set the number of simulation runs to 1000

permcorr <- as.numeric(0) #create a place to store results

for (i in 1:N){

NEWy <- sample(GPA)

permcorr[i] <- cor(x,NEWy)

}

permcorr[1:5] #look at the first 5 results

hist(permcorr) #make a histogram of the results

upper <- sum(permcorr>abs(originalr)) #count those results > 0.2444543

lower<- sum(permcorr<(-abs(originalr))) #count the lower tail results

#N.B.: "permcorr<-abs(originalr)" would _assign_ .2444543 to permcorr

so we have #to be careful and use parentheses around abs(originalr)!

pvalue <- (upper+lower)/N

pvalue #see the simulation P-value

The line hist(permcorr) produces something similar to Figure 4.15 but without the shading of
the two areas.

In the R code above we count the number of times that the permutation correlation is greater than
the observed 0.244 and we make a separate count of the number of permutation correlations smaller
than −0.244. This approach to conducting a two-sided test works well when the distribution of
permutation results is reasonably symmetric, as can be seen in Figure 4.15.

An alternative approach that works even when the distribution is skewed is to count only the cases
in the upper tail (when the observed test statistic is positive, as it is here) and then double the
result to get the p-value for the nondirectional test. The R script below illustrates this.

4.6. BOOTSTRAP FOR REGRESSION 61

upper <- sum(permcorr>originalr) #count those results > 0.2444543

pvalue <- upper*2/N

pvalue #see the simulation P-value

4.6 Bootstrap for Regression

Example 4.10: Porsche Prices

Here is an R script for collecting bootstrap samples.

PorschePrice.df <- read.csv(file.choose()) #get the data!

attach(PorschePrice.df)

originalmodel <- lm(Price~Mileage)

summary(originalmodel) #Look at the fitted model

car <- 1:30 #create indices 1,2,...,30

bootsample <- sample(car,replace=TRUE) #create a bootstrap sample

head(PorschePrice.df[bootsample,]) #look at the first few boot cases

bootmodel <- lm(Price~Mileage,data=PorschePrice.df[bootsample,])

#fit the model #using the bootstrap sample

summary(bootmodel) #look at the fitted model from the bootstrap sample

#Now do this many times

bootbetas <- matrix(0,nrow=5000, ncol=2) #set up a matrix to hold results

for (i in 1:5000) { #the main bootstrap loop

bootsample <- sample(car,replace=TRUE)

bootmodel <- lm(Price~Mileage,

data <- PorschePrice.df[bootsample,])

bootbetas[i,] <- coef(bootmodel)

}

hist(bootbetas[,2]) #Make a histogram of the slopes (the second coefficient)

To construct a confidence interval using Method #1 we need the SD of the bootstrap slopes, found
with the command

sd(bootbetas[,2])

To construct a confidence interval using Method #2 we need quantiles of the bootstrap distribution.
For this we use the commands

62 CHAPTER 4. ADDITIONAL REGRESSION TOPICS

> quantile(bootbetas[,2],.025)

> quantile(bootbetas[,2],.975)

The quantiles of the bootstrap distribution of slopes are also used in Method #3.

CHAPTER 5

Analysis of Variance

5.1 The One-Way Model: Comparing Groups

We will follow the textbook’s lead and use the fruit flies dataset to illustrate the use of R for the
one-way ANOVA analysis.

Example 5.1: Fruit Flies

In the code below, we first obtain the dataset, define it to be the data frame FruitFlies.df and
then confirm that we have 5 variables, with names given below, and we use functions head and str

to see the structure of the data frame.

Looking at the output from str we see that the first 6 variables are either integer or numeric
variables, but that the seventh variable—Treatment—is a Factor variable. A factor is R’s variable
type for categorical variables; they make it possible to give meaningful names for the values of
a categorical variable. Also, some analyses will require R to distinguish whether a variable is
numerical or categorical and thus whether the variable type is numerical or factor. This distinction
is important for ANOVA.

> FruitFlies.df <- read.csv(file=file.choose())

> attach(FruitFlies.df)

> names(FruitFlies.df)

[1] "ID" "Partners" "Type" "Longevity" "Thorax" "Sleep" "Treatment"

> head(FruitFlies.df)

ID Partners Type Longevity Thorax Sleep Treatment

1 1 8 0 35 0.64 22 8 pregnant

2 2 8 0 37 0.68 9 8 pregnant

3 3 8 0 49 0.68 49 8 pregnant

4 4 8 0 46 0.72 1 8 pregnant

63

64 CHAPTER 5. ANALYSIS OF VARIANCE

5 5 8 0 63 0.72 23 8 pregnant

6 6 8 0 39 0.76 83 8 pregnant

> str(FruitFlies.df)

’data.frame’: 125 obs. of 7 variables:

$ ID : int 1 2 3 4 5 6 7 8 9 10 ...

$ Partners : int 8 8 8 8 8 8 8 8 8 8 ...

$ Type : int 0 0 0 0 0 0 0 0 0 0 ...

$ Longevity: int 35 37 49 46 63 39 46 56 63 65 ...

$ Thorax : num 0.64 0.68 0.68 0.72 0.72 0.76 0.76 0.76 0.76 0.76 ...

$ Sleep : int 22 9 49 1 23 83 23 15 9 81 ...

$ Treatment: Factor w/ 5 levels "1 pregnant","1 virgin",..: 3 3 3 3 3 3 ...

We now replicate some of the results given in the textbook, starting with basic descriptive analysis.
The first code does the dotplots and the second code gives the summary statistics. Again, you will
note that the textbook’s Minitab dotplots have a different look but describe the same story.

> attach(FruitFlies.df)

> library(lattice) # calls up the lattice library, which contains

some graphing functions we need.

> xyplot(Longevity ~ Treatment) # produces comparative dotplots

In the code below, we replicate Table 5.1 from the text, using rounding in the second attempt to
make the output easier to read.

Assuming here FruitFlies.df is attached

> n <- tapply(Longevity,Treatment,length)

> mean <- tapply(Longevity,Treatment,mean)

> SD <- tapply(Longevity,Treatment,sd)

> cbind(n,mean,SD) #combine the 3 vectors column-wise.

NOTE: We added the standard deviation to the summary statistics.

Let’s clean up the output by rounding and putting in textbook order.

> x <- c(5,1,3,2,4)

> n <- tapply(Longevity,Treatment,length)

> mean <- round(tapply(Longevity,Treatment,mean),2)

5.1. THE ONE-WAY MODEL: COMPARING GROUPS 65

Treatment

Lo
ng

ev
ity

20

40

60

80

100

1 pregnant 1 virgin 8 pregnant 8 virgin none

Figure 5.1 (page 223): Dotplot of life spans for fruit flies

> SD <- round(tapply(Longevity,Treatment,sd),2)

> summary.mat <- cbind(n,mean,SD)[x,] # order rows using x

> summary.mat

n mean SD

none 25 63.56 16.45

1 pregnant 25 64.80 15.65

8 pregnant 25 63.36 14.54

1 virgin 25 56.76 14.93

8 virgin 25 38.72 12.10

The textbook uses the FruitFlies.df data to illustrate fundamental concepts about the one-way
ANOVA. We could use R’s basic vector operators to construct the triple decomposition, a process
that would use concepts you have learned about elsewhere in the Companion. Instead, since we
want to concentrate in this section on the R methods new to ANOVA, we will get to the triple
decomposition, residual plots, by first doing the inferential analysis of one-way ANOVA. This leads
to Section 5.2 of the text.

66 CHAPTER 5. ANALYSIS OF VARIANCE

5.2 Assessing and Using the Model for One-Way ANOVA

Here we introduce R’s aov function for fitting an ANOVA model. The form of syntax and output
for this function are similar to that of the lm function we learned about in our regression sections.
The aov function models a numeric response variable on a set of predictors that are factors. We
already encountered the use of factor predictors with regression—the case of dummy variables—so
that the main difference with aov is that it expects only predictors that are factors.

The output of aov contains features that are special to the ANOVA setting but which are still
amenable to the use of the summary function.

> attach(FruitFlies.df)

> FruitFlies.aov <- aov(Longevity ~ Treatment)

> summary(FruitFlies.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 4 11939 2984.82 13.612 3.516e-09 ***

Residuals 120 26314 219.28

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The following code reproduces Figures 5.3 (page 235) and 5.4 (page 236), residual plots for assessing
the conditions of the one-way ANOVA model. Note the use of our myqqnorm function for Figure
5.3.

> myqqnorm(FruitFlies.aov$resid) # Normal probability plot of residuals

> plot(FruitFlies.aov$fitted, FruitFlies.aov$resid) # Resids vs fits

> abline(h=0) # add the x-axis

Transformations

We now proceed to use of the Diamonds2 dataset to illustrate how to reproduce the results in the
text on transformations in the ANOVA setting.

> Diamonds2.df <- read.csv(file=file.choose())

> str(Diamonds2.df)

’data.frame’: 307 obs. of 6 variables:

$ Carat : num 1.08 0.31 0.32 0.33 0.33 0.35 0.35 0.37 0.38 0.38 ...

$ Color : Factor w/ 4 levels "D","E","F","G": 2 3 3 1 4 3 3 3 1 2 ...

$ Clarity : Factor w/ 8 levels "IF","SI1","SI2",..: 5 7 7 1 7 5 5 7 1 8 ...

$ Depth : num 68.6 61.9 60.8 60.8 61.5 62.5 62.3 61.4 60 61.5 ...

$ PricePerCt: num 6693 3159 3159 4759 2896 ...

$ TotalPrice: num 7229 979 1011 1570 956 ...

5.4. FISHER’S LEAST SIGNIFICANT DIFFERENCE 67

Assume we have ascertained, using diagnostic tools discussed previously in this chapter, that a log
transformation is prudent. We accomplish this task with the following code.

> attach(Diamonds2.df)

> log.carat <- log(Carat) # This is natural (base e) log

> Diamond.aov <- aov(log.carat ~ Color)

> summary(Diamond.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Color 3 7.618 2.53918 12.742 7.28e-08 ***

Residuals 303 60.382 0.19928

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

5.4 Fisher’s Least Significant Difference

We return now to the fruit flies data. We use the following code to calculate Fisher’s LSD for the
FruitFlies data.

> e <- FruitFlies.aov$resid

> MSE <- sum(e^2)/120

> t.crit <- qt(.975, 120)

> LSD <- t.crit*sqrt(MSE*(1/25 + 1/25))

> LSD

[1] 8.292658

Notice that this 8.29 value agrees with Example 5.10 of the textbook. To obtain all possible
differences in mean values to decide which are statistically different from which, we use the code:

> diffs <- outer(mean,t(mean),"-")

> diffs

, , 1 pregnant

[,1]

1 pregnant 0.00

1 virgin -8.04

8 pregnant -1.44

8 virgin -26.08

none -1.24

68 CHAPTER 5. ANALYSIS OF VARIANCE

, , 1 virgin

[,1]

1 pregnant 8.04

1 virgin 0.00

8 pregnant 6.60

8 virgin -18.04

none 6.80

, , 8 pregnant

[,1]

1 pregnant 1.44

1 virgin -6.60

8 pregnant 0.00

8 virgin -24.64

none 0.20

, , 8 virgin

[,1]

1 pregnant 26.08

1 virgin 18.04

8 pregnant 24.64

8 virgin 0.00

none 24.84

, , none

[,1]

1 pregnant 1.24

1 virgin -6.80

8 pregnant -0.20

8 virgin -24.84

none 0.00

The outer function takes the matrices in the first two arguments and the function named in the
third argument to produce an array. Here, the first argument is the vector mean, which is coerced
into a matrix with 5 rows and 1 column. The second argument t(mean) takes the transpose of
this matrix, which will have 1 row and 5 columns. Then, all possible differences are computed into
an array of dimensions 5 by 1 by 5. Simply printing off diffs shows all possible differences with
transparent labels, so that we can easily identify those that are significantly different.

CHAPTER 6

Multifactor ANOVA

6.1 The Two-Way Additive Model (Main Effects Model)

Since the goal of the R Companion is to introduce you to R, we will dispense here with the one-
way analyses, since you learned those in the previous chapter. We go straight to the two-way model.

Example 6.1: Frantic fingers

Below we give R code to replicate the two-way analysis for this example.

Fingers.df <- read.csv(file=file.choose()) # Get the data.

> Fingers.df # Print the data.

Subject Drug TapRate

1 I Placebo 11

2 II Placebo 56

3 III Placebo 15

4 IV Placebo 6

5 I Caffeine 26

6 II Caffeine 83

7 III Caffeine 34

8 IV Caffeine 13

9 I Theobromine 20

10 II Theobromine 71

11 III Theobromine 41

12 IV Theobromine 32

The structure of the dataset is the same, but the order stored in Fingers is different than given
in Table 6.2 (page 276). Since Table 6.1 is a user-friendly way to view the data, we give R code to
produce that here. We also produce the row and column means of the table, and attach them to
the table.

69

70 CHAPTER 6. MULTIFACTOR ANOVA

> attach(Fingers.df)

> tab <- tapply(TapRate,list(Subject,Drug),mean) # create a table of means

> tab # print out the table

Caffeine Placebo Theobromine

I 26 11 20

II 83 56 71

III 34 15 41

IV 13 6 32

> row.means <- tapply(TapRate,Subject,mean) # compute row means

> col.means <- tapply(TapRate,Drug,mean) # compute column means

> rbind(cbind(tab,row.means),c(col.means,34)) # attach row and column means

to the table.

Caffeine Placebo Theobromine row.means

I 26 11 20 19

II 83 56 71 70

III 34 15 41 30

IV 13 6 32 17

39 22 41 34

> # Notice that there is no name for the row of column means.

> # We will rectify that.

> tab2 <- rbind(cbind(tab,row.means),c(col.means,34))

> row.names(tab2)

[1] "I" "II" "III" "IV" ""

> row.names(tab2)[5] <- "col.means"

> tab2

Caffeine Placebo Theobromine row.means

I 26 11 20 19

II 83 56 71 70

III 34 15 41 30

IV 13 6 32 17

col.means 39 22 41 34

If we would prefer to list Placebo first, as in the text, we use:

> tab2[,c(2,1,3)]

> tab2[,c(2,1,3)]

6.1. THE TWO-WAY ADDITIVE MODEL (MAIN EFFECTS MODEL) 71

Placebo Caffeine Theobromine

I 11 26 20

II 56 83 71

III 15 34 41

IV 6 13 32

col.means 22 39 41

In the code, the rbind(cbind(tab,row.means),c(col.means,34)) creates a matrix with 5 rows
and 4 columns, and then the [,c(2,1,3)] tells R to print out all rows—that’s the empty spot
before the comma—and then use the columns in the order 2, 1, and then 3, giving the order we
want: Placebo, Caffeine, and then Theobromine.

The code below replicates the two-way additive model fit summarized in the text on page 280.

> attach(Fingers.df)

> Fingers.aov <- aov(TapRate ~ Drug + Subject)

> summary(Fingers.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Drug 2 872 436.00 7.8795 0.0209669 *

Subject 3 5478 1826.00 33.0000 0.0003993 ***

Residuals 6 332 55.33

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The following code reproduces the two plots in Figure 6.1.

The following two give the normal quantile plot,

with the same axis labels as the text.

> qqnorm(Fingers.aov$resid,ylab="Residuals",xlab="Normal Quantiles")

> qqline(Fingers.aov$resid)

The following gives the residuals vs. fits plot:

> plot(Fingers.aov$fitted,Fingers.aov$resid,xlab="Fitted Tap Rate", ylab="Residuals")

> abline(h=0)

Inference after the Two-way ANOVA: The River Iron Example

We now replicate the river iron examples 6.2 and 6.3. We will first replicate the parts of these
examples that we learned how to do above and then go on to obtain interaction plots and Fisher’s
LSD.

72 CHAPTER 6. MULTIFACTOR ANOVA

Example 6.2: River iron

> RiverIron.df <- read.csv(file = file.choose())

> RiverIron.df$FeLog10 <- log10(RiverIron.df$Fe) # define the logged variable

> attach(RiverIron.df)

> tab <- tapply(FeLog10,list(Site,River),mean)

> row.means <- tapply(FeLog10,Site,mean)

> col.means <- tapply(FeLog10,River,mean)

> tab2 <- rbind(cbind(tab,row.means),c(col.means,mean(FeLog10)))

> row.names(tab2)

[1] "DownStream" "MidStream" "Upstream" ""

> row.names(tab2)[4] <- "col.means" # Name the 4th row "col.means"

> round(tab2[c(3,2,1,4),],4)

Grasse Oswegatchie Raquette St. Regis row.means

Upstream 2.9750 2.9345 2.0334 2.8756 2.7046

MidStream 2.7202 2.3598 1.5563 2.7543 2.3477

DownStream 2.5145 2.1139 1.4771 2.5441 2.1624

col.means 2.7366 2.4694 1.6889 2.7247 2.4049

Explanation of R code It might be useful to explicate the R code above. The tapply function
creates a simple table of mean values of the FeLog10 variable, given as the first argument. The
second argument value, list(Site,River), tells tapply to use the Site variable as the row variable
and the River variable as the column variable. The third argument, mean, tells R to produce a
mean value for each combination of Site and River. We assign this table to the tab variable, which
is a 3-by-4 table of mean values.

We then use tapply again to create vectors of row and column means—assigning them to variables
row.means and col.means.

The final lines of R code pack a lot of R power. We create the tab2 table by adding the vector of
row.means as a column using the cbind function; this operation is nested inside a call to the rbind
function that adds a row to the bottom of the table and this row is a concatenation—using the c

function—of the col.means vector to a single, final entry which is the grand mean of the logged
iron values.

If any of this is confusing, we suggest implementing pieces of the R code starting from the inside and
working out. For example, first try typing in mean(FeLog10). Then type in c(col.means,mean(FeLog10)).
And in this fashion, work your way to the outside, observing closely what answers R gives along
the way.

6.2. INTERACTION IN THE TWO-WAY MODEL 73

To produce the interaction plot of Figure 6.3, we use the code below. We must fuss a bit with the
order of the factor levels in order to get the plot to look like the textbook figure.

> # Now obtain the interaction plot.

> Site1 <- Site[12:1] # reverse the order of the Site factor

> levels(Site1) <- levels(Site)[3:1] # reverse the order of the level names

> interaction.plot(Site1, River, FeLog10)

We produce Figure 6.4 and the ANOVA table for the River Iron model with the R code below. We
trust these lines of code should now seem familiar.

> RiverIron.aov <- aov(FeLog10 ~ River + Site)

> summary(RiverIron.aov)

Df Sum Sq Mean Sq F value Pr(>F)

River 3 2.18703 0.72901 48.153 0.0001366 ***

Site 2 0.60765 0.30383 20.069 0.0021994 **

Residuals 6 0.09084 0.01514

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> qqnorm(RiverIron.aov$resid)

> qqline(RiverIron.aov$resid)

> plot(RiverIron.aov$fitted, RiverIron.aov$resid)

> abline(h=0)

Finally, we can calculate the Fisher’s LSD values for the two factors via the formulas

LSDA = t∗

√
2 ·MSE

J
and LSDB = t∗

√
2 ·MSE

K

Here, Factor A is Site, so that J = 4 and Factor B is River, so that K = 3. When comparing
sites with Fisher’s LSD at a 5% level we use LSDSite = 2.45

√
2 ∗ 0.0151/4 = 0.213 and when we

compare rivers we use LSDRiver = 2.45
√
2 ∗ 0.0151/3 = 0.246. The 2.45 value comes from the

inverse CDF for the t-distribution with 6 degrees of freedom, that is, qt(.975,6), the precise value
being 2.446912. The .0151 is the .01514 mean-square for error obtained from the ANOVA table.
The rest of the story is told in the text.

6.2 Interaction in the Two-Way Model

We will illustrate the R calculations for the case of a balanced two-way ANOVA structure, with
more than one observation per factor combination. We will take the PigFeed example. The book
describes the new statistical issues that arise in this setting, and the R code uses nothing we have

74 CHAPTER 6. MULTIFACTOR ANOVA

not already seen before. The code below produces a table of means for each factor combination,
an interaction plot (Figure 6.5), and the ANOVA output.

> PigFeed.df <- read.csv(file=file.choose())

> attach(PigFeed.df)

> tapply(WgtGain,list(Antibiotic, B12), mean)

No Yes

No 19 22

Yes 3 54

> interaction.plot(B12,Antibiotic,WgtGain)

> PigFeed.aov <- aov(WgtGain ~ Antibiotic + B12)

> summary(PigFeed.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Antibiotic 1 192 192.00 0.8563 0.37892

B12 1 2187 2187.00 9.7537 0.01226 *

Residuals 9 2018 224.22

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

CHAPTER 7

Additional ANOVA Topics

We now describe how to use R to implement the following additonal topics in ANOVA:

• Levene’s test,

• three methods for multiple tests—Fisher’s LSD, Bonferroni, and Tukey’s HSD,

• comparisons and contrasts,

• ANOVA done through regression with indicators, and

• analysis of covariance.

7.1 Levene’s Test for Homogeneity of Variances

Example 7.1: Checking equality of variances in the fruit fly data

Levene’s test is available in the car library. The code below replicates Example 7.1:

> attach(FruitFlies.df)

> library(car)

> leveneTest(Longevity ~ Treatment)

Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 4 0.4916 0.7419

The results agree with those given in the text, Minitab being the package that produced the output
there.

7.2 Multiple Tests

We discussed Fisher’s LSD in Chapter 5, but in this section we explain R code that will implement
all three procedures, first using two built-in R functions, which have some limitations, and then

75

76 CHAPTER 7. ADDITIONAL ANOVA TOPICS

using our own code, which overcome these limitations.

The two built-in R functions that perform the three multiple comparisons methods under discussion
are pairwise.t.test and TukeyHSD. The code below illustrates them, in turn.

The first code illustrates the pairwise.t.test function, which will compute p-values for Fisher’s
LSD and Bonfferoni’s procedures, but not Tukey’s LSD. The first argument is the response variable,
the second is the explanatory, and the third is the method of adjustment for multiple comparisons.
The results, obviously, agree with those obtained before, but this function provides no confidence
interval option, which is a limitation.

Fisher’s LSD p-values:

> pairwise.t.test(Longevity, Treatment, p.adj=’none’)

Pairwise comparisons using t tests with pooled SD

data: Longevity and Treatment

1 pregnant 1 virgin 8 pregnant 8 virgin

1 virgin 0.057 - - -

8 pregnant 0.732 0.118 - -

8 virgin 7.3e-09 3.4e-05 3.7e-08 -

none 0.768 0.107 0.962 3.0e-08

P value adjustment method: none

Bonfferoni p-values:

> pairwise.t.test(Longevity, Treatment, p.adj=’bonf’)

Pairwise comparisons using t tests with pooled SD

data: Longevity and Treatment

1 pregnant 1 virgin 8 pregnant 8 virgin

1 virgin 0.57282 - - -

8 pregnant 1.00000 1.00000 - -

8 virgin 7.3e-08 0.00034 3.7e-07 -

none 1.00000 1.00000 1.00000 3.0e-07

P value adjustment method: bonferroni

The next code uses the TukeyHSD function, which does give output for confidence intervals. Here
we input the ANOVA object, FruitFlies.aov, rather than response and explanatory variables.
Here the output is similar to the text’s Minitab results, but in a less transparent configuration.

7.2. MULTIPLE TESTS 77

The limitation of this function is simply that it only gives us the Tukey results.

> TukeyHSD(FruitFlies.aov)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = Longevity ~ Treatment)

$Treatment

diff lwr upr p adj

1 virgin-1 pregnant -8.04 -19.640468 3.560468 0.3126549

8 pregnant-1 pregnant -1.44 -13.040468 10.160468 0.9969591

8 virgin-1 pregnant -26.08 -37.680468 -14.479532 0.0000001

none-1 pregnant -1.24 -12.840468 10.360468 0.9983034

8 pregnant-1 virgin 6.60 -5.000468 18.200468 0.5157692

8 virgin-1 virgin -18.04 -29.640468 -6.439532 0.0003240

none-1 virgin 6.80 -4.800468 18.400468 0.4854206

8 virgin-8 pregnant -24.64 -36.240468 -13.039532 0.0000004

none-8 pregnant 0.20 -11.400468 11.800468 0.9999988

none-8 virgin 24.84 13.239532 36.440468 0.0000003

The R code below is our own and provides a basic method for producing simultaneous confidence
intervals with a family-wise error rate of α, and hence a family-wise coverage probability of 1− α.
We have varied below our tradition of including the > R prompt, since this chunk of code was
created from an R script and can be more easily typed into an R script (or text file) and executed
as a single chunk, rather than line by line. Notice that the code produces confidence interval output
that matches the text’s Minitab results.

The term script in the previous paragraph has a technical meaning, which we describe here. When
a sequence of R code becomes long, especially if it is likely to be used more than once, perhaps in
modified form, it becomes cumbersome to enter the code via the command line. In this case, one
can create a file of the code using a text editor and then this file can be entered into R directly
at the > prompt to execute it in one fell swoop, using a copy-and-paste operation. While any text
editor could be used for this purpose, implementations of R include a built-in editor to create these
files and in this context R calls the file a script. R also gives you easy ways to run the script or
portions of it. For example, you might look to the File menu and options like “New script” to
create a new script or “Open script” to open an existing one. Then the menu bar will likely have
a way to easily run the script (or portions of it) under one of the menu bar headings, such as Edit.

attach(FruitFlies.df)

names(FruitFlies.df)

n <- length(unique(Treatment)) # n=number of Treatments

k <- choose(n,2) # k=number of pairs

78 CHAPTER 7. ADDITIONAL ANOVA TOPICS

Produce Fisher LSD intervals:

means.tab = vector of Treatment means

means.tab <- as.vector(tapply(Longevity,Treatment,mean))

n.tab = vector of sample sizes

n.tab <- as.vector(tapply(Longevity,Treatment,length))

summary.df will contain the CI information

we initialize it to all 0s.

summary.df <- as.data.frame(matrix(0,ncol=8,nrow=k))

names(summary.df) <- c("i","j","n.i","n.j", # attach names to columns

"i-j.diff","lcl","ucl","signif?")

create a simple set of Treatment names

name <- c("1pg","1vir","8pg","8vir","none")

mse <- 219.28

dfe <- 120

alpha <- .05

We compute mean differences and confidence limits

through a pair of nested "for loops."

index <- 0

for (i in 1:(n-1)) {

for (j in (i+1):n) {

index <- index + 1

summary.df[index,1] <- name[i]

summary.df[index,2] <- name[j]

summary.df[index,3] <- n.tab[i]

summary.df[index,4] <- n.tab[j]

center <- means.tab[i] - means.tab[j]

summary.df[index,5] <- center

moe <- qt(1-alpha/2, dfe)*sqrt(mse*(1/n.tab[i] + 1/n.tab[j]))

The next two lines are commented out, but would replace the

previous line for producing Bonferroni or Tukey HSD intervals.

moe <- qt(1-alpha/(2*k), dfe)*sqrt(mse*(1/n.tab[i] + 1/n.tab[j]))

moe <- (qtukey(1-alpha,n,dfe)/sqrt(2))*sqrt(mse*(1/n.tab[i] + 1/n.tab[j]))

lcl <- center - moe

ucl <- center + moe

summary.df[index,6] <- lcl

summary.df[index,7] <- ucl

if (lcl*ucl > 0) summary.df[index,8] <- "YES" else summary.df[index,8] <- "no"

}}

> summaryLSD.df <- summary.df

7.2. MULTIPLE TESTS 79

Fisher’s LSD Output:

> summaryLSD.df

i j n.i n.j i-j.diff lcl ucl signif?

1 1pg 1vir 25 25 8.04 -0.2526709 16.332671 no

2 1pg 8pg 25 25 1.44 -6.8526709 9.732671 no

3 1pg 8vir 25 25 26.08 17.7873291 34.372671 YES

4 1pg none 25 25 1.24 -7.0526709 9.532671 no

5 1vir 8pg 25 25 -6.60 -14.8926709 1.692671 no

6 1vir 8vir 25 25 18.04 9.7473291 26.332671 YES

7 1vir none 25 25 -6.80 -15.0926709 1.492671 no

8 8pg 8vir 25 25 24.64 16.3473291 32.932671 YES

9 8pg none 25 25 -0.20 -8.4926709 8.092671 no

10 8vir none 25 25 -24.84 -33.1326709 -16.547329 YES

Explanation of code We create a data frame called summary.df to store the results of our
calculations; we begin by initializing it to all zeroes. Constants n and k are the number of treatments
(5) and the number of pairs of treatments (10). We use the comb function to calculate k as
“combinations of n things taken 2 at a time” or k <- choose(n,2).

Next, we enter a set of 8 column names for summary.df and 5 names for the different treatments,
using names shorter than given in the book, but easy to identify with those in the book. We shorten
them to make the output easier on the eye. We next enter the mean square error, its degrees of
freedom, and the value of α.

We now enter the looping stage of the code. The for command in R creates a sequence of lines
that are repeated for various instances of the “loop counter,” which is i for the first for statement
and j for the next one. The first encountered loop—called the outer loop—runs through values of
i beginning at 1 and ending at n-1=5-1=4.

For each value of i, the second loop—the inner loop—runs through values of j beginning at i+1
and ending at n=5. The result of these “nested for loops” is that we repeat the sequence of R lines
within the loops as we run through the (i,j) combinations: (1,2), (1,3), (1,4), (1,5), (2,3), (2,4),
(2,5), (3,4), (3,5), (4,5).

Each time through this sequence we compute the entries to that particular (i,j) combination of
treatments with the first column being the i-th treatment name, the second column being the j-th
treatment name, the third and fourth columns being the two sample sizes, the fifth column being
the difference in sample means (“i minus j”), the sixth column being the lower confidence limit
(lcl) and the seventh column being the upper confidence limit (ucl). Finally, the eighth column
records a YES for those pairs that are statistically significantly different, and otherwise it records
a “no.”

80 CHAPTER 7. ADDITIONAL ANOVA TOPICS

In the code we denote the margin of error of the confidence interval by moe. The only difference
between our three methods lies in the calculation of moe. In the code we have commented out two
lines that give alternative calculations for the margins of error for Bonferroni and Tukey methods.
To run these alternatives, simply comment out the current moe line for Fisher’s LSD and uncom-
ment the alternative you want to calculate.

Having done separate calculations for all three methods we now add the output given below to
give us all three procedures. Note the agreement with the textbook’s Minitab results. (Some
subtractions of group means were made in reverse order, creating negative signs for positive signs,
and vice versa.)

Bonfferoni Output:

> summaryBONF.df

i j n.i n.j i-j.diff lcl ucl signif?

1 1pg 1vir 25 25 8.04 -3.938157 20.018157 no

2 1pg 8pg 25 25 1.44 -10.538157 13.418157 no

3 1pg 8vir 25 25 26.08 14.101843 38.058157 YES

4 1pg none 25 25 1.24 -10.738157 13.218157 no

5 1vir 8pg 25 25 -6.60 -18.578157 5.378157 no

6 1vir 8vir 25 25 18.04 6.061843 30.018157 YES

7 1vir none 25 25 -6.80 -18.778157 5.178157 no

8 8pg 8vir 25 25 24.64 12.661843 36.618157 YES

9 8pg none 25 25 -0.20 -12.178157 11.778157 no

10 8vir none 25 25 -24.84 -36.818157 -12.861843 YES

Tukey HSD Output:

> summaryTukey.df

i j n.i n.j i-j.diff lcl ucl signif?

1 1pg 1vir 25 25 8.04 -3.560486 19.640486 no

2 1pg 8pg 25 25 1.44 -10.160486 13.040486 no

3 1pg 8vir 25 25 26.08 14.479514 37.680486 YES

4 1pg none 25 25 1.24 -10.360486 12.840486 no

5 1vir 8pg 25 25 -6.60 -18.200486 5.000486 no

6 1vir 8vir 25 25 18.04 6.439514 29.640486 YES

7 1vir none 25 25 -6.80 -18.400486 4.800486 no

8 8pg 8vir 25 25 24.64 13.039514 36.240486 YES

9 8pg none 25 25 -0.20 -11.800486 11.400486 no

10 8vir none 25 25 -24.84 -36.440486 -13.239514 YES

7.3. COMPARISONS AND CONTRASTS 81

7.3 Comparisons and Contrasts

The code below reproduces two contrasts discussed in the textbook for the fruit flies data, Examples
7.5 and 7.7. In essence, we are simply using R as a convenient calculator. Particular points to note
in the calculation are:

• the use of levels(Treatment) to remind ourselves of the order of the treatments, so we can
define the contrast vector correctly;

• the use of tapply to obtain vectors of means and sample sizes for the 5 treatments;

• the use of the elements residuals and df.residual from the FruitFlies.aov object, which
we use to calculate the mean square error term (mse); and

• the use of vector arithmetic in computing the value of the sample contrast (effect1) and the
standard error of the sample contrast (se1).

We include the calculation for the second contrast as well, although the details work exactly
the same way.

> attach(FruitFlies.df)

> levels(Treatment) # We want to recall the Treatment names

and their order.

[1] "1 pregnant" "1 virgin" "8 pregnant" "8 virgin" "none"

> means <- as.vector(tapply(Longevity,Treatment,mean))

Vector of treatment means

> n <- as.vector(tapply(Longevity, Treatment, length))

Vector of treatment sample sizes

> mse <- sum(FruitFlies.aov$residuals^2/FruitFlies.aov$df.residual) # compute MSE

> con1 <- c(0,0,0,1,-1) # This is the contrast we wish to calculate.

> effect1 <- sum(con1*means) # This computes the sample contrast, a simple linear

combination of treatment means using the contrast.

> se1 <- sqrt(sum(mse*con1^2/n)) # Compute the standard error for the contrast.

> t1 <- effect1/se1 # Compute the t-ratio for the contrast.

> 2*pt(t1,FruitFlies.aov$df.residual) # Computer the one si

[1] 2.979631e-08 <--- the p-value is nearly 0

> con2 <- sum(c(-.5,.5,-.5,.5,0)*means)

> effect2 <- sum(con2*means)

> se2 <- sqrt(sum(mse*con2^2/n))

> t2 <- effect2/se2

> 2*pt(t2,FruitFlies.aov$df.residual)

[1] 3.575887e-75 <--- the p-value is nearly 0

82 CHAPTER 7. ADDITIONAL ANOVA TOPICS

7.4 Nonparametric Statistics

Two-Sample Nonparametric Procedures

Here we introduce the R implementation of the Wilcoxon-Mann-Whitney procedure which de-
pends upon the wilcox-test function. We begin by asking for R help about this function using
help(wilcox.test). We reproduce a portion of the help message. First, wilcox.test(x, ...)

indicates that only the first argument, a vector denoted by x here, is required. But the next portion
of the help message tells us that for a two-sample problem we will need a second vector, y. Since
the text has produced a confidence interval we need to define the conf.int = TRUE argument to
override the default, which is to not produce a confidence interval. Also note that the default
procedure is to correct for ties, as indicated by the correct=TRUE argument.

The R code below reproduces the results from the textbook Example 7.11. First, we obtain the
dataset, attach it, and verify the names of the variables; we are interested in the second two, which
give tail length for red-tailed (RT) and sharp-shinned hawks (SS). We then use summary to verify
the basic summary statistics and note that while median values match up, the sample sizes are not
right. Notice the 316 missing values for the sharp-shinned hawks. This has resulted from having
extracted the two vectors from a data frame and data frames always are row-and-column structures,
with equal column lengths. The length of 577 for the red-taileds made 577 the column dimension,
so the short-fall in sharp-shinned tail-lengths resulted in 316 missing values (NAs) being entered in
that column.

We remedy this imbalance by defining a new vector Tail SS nonNA that just contains the non-
missing values. Notice that we now have sample sizes and medians matching those in the text.
From there, we use wilcox.test to compute the Wilcoxon-Mann-Whitney test, having now two
numeric vectors with no missing values. And we see results that agree with those in the book.

Asking for help is a sign of maturity:

> help(wilcox.test)

What follows is a portion of the help message:

Usage

wilcox.test(x, ...)

Default S3 method:

wilcox.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),

mu = 0, paired = FALSE, exact = NULL, correct = TRUE,

conf.int = FALSE, conf.level = 0.95, ...)

7.4. NONPARAMETRIC STATISTICS 83

> HawkTail2.df <- read.csv(file=file.choose())

> attach(HawkTail2.df)

> names(HawkTail2.df)

[1] "Tail_CH" "Tail_RT" "Tail_SS"

> length(Tail_RT)

[1] 577

> length(Tail_SS)

[1] 577

> summary(Tail_RT)

Min. 1st Qu. Median Mean 3rd Qu. Max.

122.0 214.0 221.0 222.1 230.0 288.0

> summary(Tail_SS)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

119.0 133.0 150.0 146.7 158.0 221.0 316.0

Note the missing values for the Sharp-shinneds. We remove those:

Tail_SS_nonNA <- Tail_SS[is.na(Tail_SS)==0]

> Tail_SS_nonNA <- Tail_SS[is.na(Tail_SS)==0]

> summary(Tail_SS_nonNA)

Min. 1st Qu. Median Mean 3rd Qu. Max.

119.0 133.0 150.0 146.7 158.0 221.0

> wilcox.test(Tail_RT,Tail_SS_nonNA,conf.int=T,alternative ="two.sided")

> wilcox.test(Tail_RT,Tail_SS_nonNA,conf.int=T)

Wilcoxon rank sum test with continuity correction

data: Tail_RT and Tail_SS_nonNA

W = 149305, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

74.00000 78.00004

sample estimates:

difference in location

76.00005

84 CHAPTER 7. ADDITIONAL ANOVA TOPICS

Nonparametric ANOVA

The R kruskal.test function calculates the Kruskal-Wallis procedure that the book introduces,
from Example 7.12. We again include an R help message followed by code that reproduces the
book results. There are two ways to input the data to kruskal.test: (1) as a list of data vectors,
or (2) as a formula of the form y ∼ x, where the y variable gives the data values and the x variable
gives the group values. We will use both forms to reproduce the Cancer Survival results.

After obtaining and attaching the Cancer Survival data, we compute the Kruskal-Wallis test to
obtain the same values that the text reports. We also produce a table of sample size and median
by group, to conform to the results in the book. We have included the boxplot R command to
reproduce Figure 7.6 but have not actually included the figure in this document.

We next, redo the example using the first of the options for input listed above. This example
actually lends itself more naturally to the second option above, so we first define some separate
group vectors for each of the 5 types of cancer. Then we enter these as a list of 5 vectors to be
compared with the Kruskal-Wallis test. The results are identical, of course.

kruskal.test(x, ...)

Default S3 method:

kruskal.test(x, g, ...)

S3 method for class ’formula’:

kruskal.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.

Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs the

corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing

the variables in the formula formula. By default the variables are taken from

environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain

NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

7.4. NONPARAMETRIC STATISTICS 85

--

> # Cancer Survival Example

> CancerSurvival.df <- read.csv(file=file.choose()) # obtain Cancer Survival data

> names(CancerSurvival.df)

> attach(CancerSurvival.df)

> boxplot(Survival ~ Organ) # re-produce boxplot

> kruskal.test(Survival ~ Organ)

Kruskal-Wallis rank sum test

data: Survival by Organ

Kruskal-Wallis chi-squared = 14.9539, df = 4, p-value = 0.004798

Obtain sample sizes and medians by group:

> med <- tapply(Survival,Organ,median)

> n <- tapply(Survival,Organ,length)

> cbind(n,med)

n med

Breast 11 1166

Bronchus 17 155

Colon 17 372

Ovary 6 406

Stomach 13 124

> # Alternative input to kruskal.test

First, define separate survival vectors for each of the 5 groups:

> Breast <- Survival[Organ=="Breast"]

> Bronchus <- Survival[Organ=="Bronchus"]

> Colon <- Survival[Organ=="Colon"]

> Ovary <- Survival[Organ=="Ovary"]

> Stomach <- Survival[Organ=="Stomach"]

Now, apply kruskal.test to the list comprising these 5 vectors:

> kruskal.test(list(Breast,Bronchus,Colon,Ovary,Stomach))

Kruskal-Wallis rank sum test

data: list(Breast, Bronchus, Colon, Ovary, Stomach)

Kruskal-Wallis chi-squared = 14.9539, df = 4, p-value = 0.004798

86 CHAPTER 7. ADDITIONAL ANOVA TOPICS

7.5 ANOVA and Regression with Indicators

We learned about regression with indicators as predictors in Section 4.4. We will illustrate here
how to code up the example from the current section that uses indicators to analyze some simple
ANOVA designs that, on first encounter, do not appear to be regression problems.

Two-Sample Comparison of Means as Regression

The code below recalculates the pooled two-sample t-test for Example 7.13. Let’s go through the
various parts of the code. After attaching FruitFlies.df we form the subset of this data frame
corresponding to just the two treatments—“8 virgin” and “none”—required for the example. The
indices variable we create in the second line contains 125 true or false values, where TRUE indi-
cates a row number we wish to be in our data subset. Note the use of the logical operator | for the
logical “or.” The result of the logical “or” is to put a TRUE value into indices if either treatment
value is true. (You can print out indices to verify this.) Then, in line 4, we create the two-groups
data frame by taking only those rows of FruitFlies.df for which indices have a TRUE value.
Again, the blank space after the comma in FruitFlies.df[indices,] indicates that all columns
are chosen.

After detaching FruitFlies.df we attach FruitFliesTwoGroups.df to simplify references to the
variable names. The line that defines the variable Eight takes all values of the Longevity variable
that correspond to a treatment value of “8 virgin.” Similarly we create the vector of Longevity
values called none. The two vectors Eight and none are the two variables we place into the t.test
function to reproduce the two-sample t-test, using the var.equal=T argument to obtain the pooled
t-test. Notice results that agree with those in the text.

> attach(FruitFlies.df)

> indices <- FruitFlies.df$Treatment=="8 virgin" | FruitFlies.df$Treatment=="none"

> detach()

> FruitFliesTwoGroups.df <- FruitFlies.df[indices,]

> attach(FruitFliesTwoGroups.df)

> Eight <- Longevity[Treatment=="8 virgin"]

> none <- Longevity[Treatment=="none"]

> t.test(Eight,none,var.equal=T)

Two Sample t-test

data: Eight and none

t = -6.0811, df = 48, p-value = 1.885e-07

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-33.05298 -16.62702

7.5. ANOVA AND REGRESSION WITH INDICATORS 87

sample estimates:

mean of x mean of y

38.72 63.56

Next, we redo the calculations as a simple regression problem with a single indicator as the pre-
dictor variable. The logical statement Treatment == "8 virgin" creates a TRUE-FALSE vector,
whereas we would like our dummy predictor variable to be a numeric 0-1 variable. We could coerce
the logical into a numeric with a as.numeric(Treatment=="as.virgin") function call, but the lm
function does this automatically for us. Again, we see agreement with the text.

> detach()

> attach(FruitFliesTwoGroups.df)

> v8 <- Treatment == "8 virgin"

> model <- lm(Longevity ~ v8)

> summary(model)

Call:

lm(formula = Longevity ~ v8)

Residuals:

Min 1Q Median 3Q Max

-26.56 -8.72 -1.56 8.40 32.44

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.560 2.888 22.006 < 2e-16 ***

v8 -24.840 4.085 -6.081 1.88e-07 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 14.44 on 48 degrees of freedom

Multiple R-squared: 0.4352, Adjusted R-squared: 0.4234

F-statistic: 36.98 on 1 and 48 DF, p-value: 1.885e-07

One-Way ANOVA for Means as Regression

Here, we use all 5 treaments for the fruit flies and compare the ANOVA approach to the regression.
(See Example 7.14.) The ANOVA calculations with R follow and are straightforward. We note the
agreement with the results in the textbook.

attach(FruitFlies.df)

model <-aov(Longevity ~ Treatment)

summary(model)

88 CHAPTER 7. ADDITIONAL ANOVA TOPICS

> summary(model)

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 4 11939 2984.82 13.612 3.516e-09 ***

Residuals 120 26314 219.28

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We next replicate with R the equivalent regression calculations. After attaching the data frame
(which would not be needed if this code follows that above), we use levels(Treatment) to cause
R to print the values of the Treatment factor. We proceed to define the 4 indicator or dummy
variables that we will use in our regression model. These are the variables p1, v1, p8, v8. For
example, as we observed above, the statement p1 <- Treatment=="1 pregnant" defines a logical
vector (TRUEs and FALSEs) of length 125 saying if each case has a Treament value of “1 pregnant”
or not. After defining these 4 indicators, we compute the model with the lm function and obtain a
summary. Again, the results agree with those in the textbook.

> attach(FruitFlies.df)

> levels(Treatment)

[1] "1 pregnant" "1 virgin" "8 pregnant" "8 virgin" "none"

> p1 <- Treatment=="1 pregnant" # creates indicator variable for "1 pregnant"

> v1 <- Treatment=="1 virgin" # creates indicator variable for "1 virgin"

> p8 <- Treatment=="8 pregnant" # creates indicator variable for "8 pregnant"

> v8 <- Treatment=="8 virgin" # creates indicator variable for "8 virgin"

> model <- lm(Longevity ~ p1 + v1 + p8 + v8)

> summary(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 63.560 2.962 21.461 < 2e-16 ***

p1TRUE 1.240 4.188 0.296 0.768

v1TRUE -6.800 4.188 -1.624 0.107

p8TRUE -0.200 4.188 -0.048 0.962

v8TRUE -24.840 4.188 -5.931 2.98e-08 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 14.81 on 120 degrees of freedom

Multiple R-squared: 0.3121, Adjusted R-squared: 0.2892

F-statistic: 13.61 on 4 and 120 DF, p-value: 3.516e-09

7.5. ANOVA AND REGRESSION WITH INDICATORS 89

Two-Way ANOVA for Means as Regression

The code below replicates the two-way ANOVA for the PigFeeds data, Example 7.15.

> attach(PigFeed.df)

> names(PigFeed.df)

> model.aov <- aov(WgtGain~Antibiotic+B12)

> summary(model.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Antibiotics 1 192 192.00 0.8563 0.37892

B12 1 2187 2187.00 9.7537 0.01226 *

Residuals 9 2018 224.22

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

To perform the equivalent regression analysis, and reproduce the text’s results, we use the R code
below. The first two lines define the indicator predictors: A has value 1 when a case has a value of
“Yes” for Antibiotics, 0 otherwise; B has value 1 when the value of B12 is “Yes,” 0 otherwise. We
use the as.numeric function to coerce a True-False vector into a 1-0 vector, although if we did
not use as.numeric R would automatically coerce the TRUEs to 1s and the FALSEs to 0s, so in
that sense using as.numeric is optional.

We use summary(model.lm) to obtain the regression output that agrees with that in the textbook,
and we use anova(model.lm) to obtain the ANOVA table with sums of squares, the difference
being that the textbook’s sum of squares for regression is the sum of R’s separate sum of squares
for the A and B variables.

#Two predictor regression with no interaction:

> A <- as.numeric(Antibiotics=="Yes") # creates indicator variable for Antibiotics; Yes=1

> B <- as.numeric(B12=="Yes") # creates indicator variable for B12; Yes=1

> model.lm <- lm(WgtGain ~ A + B)

> summary(model.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.000 7.487 0.935 0.3742

A 8.000 8.645 0.925 0.3789

B 27.000 8.645 3.123 0.0123 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

90 CHAPTER 7. ADDITIONAL ANOVA TOPICS

Residual standard error: 14.97 on 9 degrees of freedom

Multiple R-squared: 0.5411, Adjusted R-squared: 0.4391

F-statistic: 5.305 on 2 and 9 DF, p-value: 0.03006

> anova(model.lm)

Analysis of Variance Table

Response: WgtGain

Df Sum Sq Mean Sq F value Pr(>F)

A 1 192 192.00 0.8563 0.37892

B 1 2187 2187.00 9.7537 0.01226 *

Residuals 9 2018 224.22

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We now proceed to fit the model with interaction, first replicating the two-way ANOVA results
using the aov function and following this with the equivalent regression model using the lm function.

> model2.aov <- aov(WgtGain ~ Antibiotics + B12 + Antibiotic:B12)

> summary(model2.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Antibiotics 1 192 192.00 5.2966 0.050359 .

B12 1 2187 2187.00 60.3310 5.397e-05 ***

Antibiotics:B12 1 1728 1728.00 47.6690 0.000124 ***

Residuals 8 290 36.25

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We then reproduce the corresponding analysis as a regression model with an interaction term that
is the product of indicators A and B. The results agree again with the textbook.

> model2.lm <- lm(WgtGain ~ A + B + A*B)

> summary(model2.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.000 3.476 5.466 0.000597 ***

A -16.000 4.916 -3.255 0.011619 *

B 3.000 4.916 0.610 0.558624

A:B 48.000 6.952 6.904 0.000124 ***

7.5. ANOVA AND REGRESSION WITH INDICATORS 91

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.021 on 8 degrees of freedom

Multiple R-squared: 0.934, Adjusted R-squared: 0.9093

F-statistic: 37.77 on 3 and 8 DF, p-value: 4.532e-05

> anova(model2.lm)

Analysis of Variance Table

Response: WgtGain

Df Sum Sq Mean Sq F value Pr(>F)

A 1 192 192.00 5.2966 0.050359 .

B 1 2187 2187.00 60.3310 5.397e-05 ***

A:B 1 1728 1728.00 47.6690 0.000124 ***

Residuals 8 290 36.25

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Analysis of Covariance

We begin by reproducing the Grocery Stores example, Example 7.17. First, the one-way ANOVA:

> Grocery.df <- read.csv(file=file.choose())

> names(Grocery.df)

> model1.aov <- aov(Sales ~ Discount)

> summary(model1.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Discount 2 1288 644.19 0.5734 0.5691

Residuals 33 37074 1123.46

> library(car)

> leveneTest(Sales ~ Discount)

Levene’s Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 2 0.9262 0.4061

33

#Using our earlier user-defined function myqqnorm:

> myqqnorm(model1.aov$resid)

Alternatively, using basic R functions:

> qqnorm(model1.aov$resid)

> qqline(model1.aov$resid)

92 CHAPTER 7. ADDITIONAL ANOVA TOPICS

Either produce the results from the text.

Finally the code to produce a residuals-vs-fits plot:

> plot(model1.aov$fit, model1.aov$resid)

As in the text, note the nonsignificant relationship between Sales and Discount. The plot in
Figure 7.11(a) gives a good visual confirmation of this result. We give here the R code for that
figure. A couple of nuances deserve explanation. The first line uses the levels argument to the
factor function to define a more reasonable order to the factor levels than the default order, which
is alphabetical. Yes, “10.00” comes before “5.00” as alphabetical strings, but alpha-order is not
natural here and is not the order we want for our comparative dotplots.

Without the first line, the plot gives the groups in the order 10.00%, 15.00%, 5.00%,

which is alphabetical, but unnatural in this context.

> Grocery.df$Discount <- factor(Grocery.df$Discount,levels=c("5.0%","10.00%","15.00%"))

> attach(Grocery.df)

> library(lattice)

> xyplot(Sales ~ Discount,col="black") # The default color is blue.

Figure 7.10 tells us that the conditions of normally distributed errors (Figure (a)) and equal vari-
ances (Figure (b)) are met when considering just the one-way ANOVA model of Sales on the factor
of interest, Discount. This establishes the first of the three conditions for the ANCOVA model.

We next go to Figure 7.11, which gives a scatterplot of Sales versus Price, controlling for Discount.
The R code is given here. The explanation is as follows. After attaching the dataset, we use plot

to graph the full scatterplot of all 36 data points, except that by using the type=’n’ argument,
we suppress the actual plotting of the points. The reason for this line is that we wish to set up
our axes, with proper labels, and with x and y ranges sufficient for all points in the dataset. We
suppress the plotting of points because we want separate scatterplots for the subsets obtained by
controlling for discount level.

The next section of code defines 3 new x-variables and 3 corresponding y-variables based upon
the value of Discount. For example, the line Sales5 <- Sales[Discount=="5.00%"] defines a
y-variable that is all those values of Sales for which the value of Discount is 5.00%. The next sec-
tion of code uses the points function to add points to the existing coordinate system that creates
the 3 scatterplots, each at a different discount value, each using a different plotting symbol. We
then use the locator function to interactively add a legend in the upper left-hand corner of the
plot, this location chosen by the user because it is a large area of open white space.

The final section of code adds regression lines to each of the 3 scatterplots using the lm function
to compute the line and the abline function to graph the line. Each line gets a different line style
using the lty argument.

7.5. ANOVA AND REGRESSION WITH INDICATORS 93

> attach(Grocery.df)

> plot(Price, Sales,xlab="Price",ylab="Sales",type="n") # set up axes

This group of scatterplots defines 3 subsets of the data based

upon discount level:

> Sales5 <- Sales[Discount=="5.00%"]

> Price5 <- Price[Discount=="5.00%"]

> Sales10 <- Sales[Discount=="10.00%"]

> Price10 <- Price[Discount=="10.00%"]

> Sales15 <- Sales[Discount=="15.00%"]

> Price15 <- Price[Discount=="15.00%"]

This section of code produces 3 separate scatterplots for the 3 subsets.

> points(Price5,Sales5,pch=1) # open circle

> points(Price10,Sales10,pch=0) # open square

> points(Price15,Sales15,pch=16) # solid circle

This allows the user to place a proper legend, interactively, into the plot:

> legend(locator(1),c("5.00%","10.00%","15.00%"), pch = c(1,0,16))

These 3 lines of code add regression lines to each of the 3 scatterplots:

> abline(lm(Sales5 ~ Price5), pch=1)

> abline(lm(Sales10 ~ Price10), lty=2)

> abline(lm(Sales15 ~ Price15), lty=4)

As stated in the text, this figure lends support to the appropriateness of the ANCOVA model, in
that there is a clear shift in level depending upon the level of the discount, but within each discount
level the relationship between Sales and Price is roughly linear and the three slopes tend to be
about the same.

Before proceeding with the ANCOVA calculations, we reproduce the plots (Figure 7.12 and Fig-
ure 7.13) that corroborate the second ANCOVA condition that the regression conditions for a
simple regression of Sales on Price should be met, ignoring Discount. This is straightforward
code similar to some we saw in the earliest regression examples.

> attach(Grocery.df)

> plot(Price, Sales) # A basic scatterplot

> model <- lm(Sales ~ Price) # Compute the simple linear regression line

> qqnorm(model$resid) # normal plot of residuals

> qqline(model$resid) # add a line to the normal plot

> plot(model$fit, model$resid) # create a residuals-vs-fit plot

> abline(h=0,lty=2) # for clarity, add dashed horizontal line at 0

94 CHAPTER 7. ADDITIONAL ANOVA TOPICS

8.0 8.5 9.0

16
0

20
0

24
0

Price

S
al

es

5.00%
10.00%
15.00%

Figure 7.11 (page 371): Scatterplot of sales against price by amount of discount

Finally, we recompute Example 7.19, “Grocery using ANCOVA model” with R. Here is the code.
Note: To calculate the ANCOVA analysis the order of predictors is important in the model state-
ment, so we use the order Price + Discount, rather than the other way around. This is because
the anova function computes sequential sums of squares and we want the effect of Discount after
adjusting for Price. The results below do confirm those in the text.

> model <- lm(Sales ~ Price + Discount)

> anova(model)

Analysis of Variance Table

Response: Sales

Df Sum Sq Mean Sq F value Pr(>F)

Price 1 36718 36718 1391.366 < 2.2e-16 ***

Discount 2 800 400 15.149 2.348e-05 ***

Residuals 32 844 26

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

7.5. ANOVA AND REGRESSION WITH INDICATORS 95

Notice then that the ANOVA table, created by anova(model), agrees with that in the text,
except that R does not give us the values of S or R2. To obtain these requires the statement
summary(model). We also point out that the summary(model) output gives coefficient estimates
for the indicator variables that R automatically creates when it recognizes that Discount is a fac-
tor with three levels. (The choice of the 5.00% discount level as the reference category was also
determined by R.) Here is the R output.

> summary(model)

Call:

lm(formula = Sales ~ Price + Discount)

Residuals:

Min 1Q Median 3Q Max

-14.444 -3.183 1.050 3.510 9.045

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -472.953 18.317 -25.820 < 2e-16 ***

Price 79.591 2.148 37.052 < 2e-16 ***

Discount10.00% 6.822 2.107 3.238 0.00280 **

Discount15.00% 11.476 2.098 5.471 5.04e-06 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.137 on 32 degrees of freedom

Multiple R-squared: 0.978, Adjusted R-squared: 0.9759

F-statistic: 473.9 on 3 and 32 DF, p-value: < 2.2e-16

CHAPTER 9

Logistic Regression

9.1 Choosing a Logistic Regression Model

Example 9.1: Losing Sleep The data on teen sleep was collected using a survey that coded
0=No and 1=Yes as shown in Table 9.2.

To summarize this raw data in a table like Table 9.1,
use the table command.

table(sleep, age)

if you want to refer to the table later, give it a name

sleep.tab = table(sleep, age)

Alternatively, if you have data summarized in a table, you can create the table in R. That’s the
approach we take here, but things are somewhat simplified if you work with the raw data. We
create the summary table, Table 9.1, for the teens’ sleep data from Example 9.1.

> sleep.mat=matrix(c(12,34,35,79,37, 77,39,65,27,41),nrow=2,

dimnames=list(c("Less than 7 hours", "7 hours or more"),

c("14","15","16","17","18")))

>

> sleep.mat

14 15 16 17 18

Less than 7 hours 12 35 37 39 27

7 hours or more 34 79 77 65 41

97

98 CHAPTER 9. LOGISTIC REGRESSION

If you would like to include the column totals you can use the addmargins command.

> addmargins(sleep.mat,1)

14 15 16 17 18

Less than 7 hours 12 35 37 39 27

7 hours or more 34 79 77 65 41

Sum 46 114 114 104 68

Graphs with Proportion of Yes’s

The next three graphs concerning the sleep data have the proportion of teens getting 7 or more
hours of sleep. It is easy to create these proportions with the data summarized in our table
using prop.table. Note that a table must be input to the prop.table command. Here, we have
named our table; sometimes we create the table within the prop.table command, for example,
prop.table(table(sleep,age),2).

Table of proportion of no’s and yes’s for each age

prop.tab=round(prop.table(sleep.mat,2),3) #age-conditional probability of yes

prop.tab

Figure 9.1 Proportion of Yes’s by Age

These proportions can be plotted versus age, we only need to plot the proportion of yes’s for each
age group. Figure 9.1 can be produced by the code below.

> age=14:18

> prop.yes=prop.tab[2,] # the second row of the table of proportions

> plot(age,prop.yes,xlab="Age",ylab="Proportion Saying Yes",

ylim=c(0.5,.9),xlim=c(12,20))

Figure 9.2 Proportion of Yes’s with a Regression Line by Age

It’s tempting to create a regression line to add to the plot of age versus the proportion of yes’s
along with horizontal lines at 0 and 1. We do that here but come up with a much better approach
later. The dotted lines represent the bounds for a proportion, 0 and 1.

plot(age,prop.yes,xlab="Age",ylab="Proportion Saying Yes",

ylim=c(-0.1,1.1),xlim=c(0,40))

abline(lm(prop.yes~age))

abline(h=1,lty=2)

abline(h=-0,lty=2)

9.1. CHOOSING A LOGISTIC REGRESSION MODEL 99

Figure 9.3 Proportion of Yes’s with Logistic Regression Curve by Age

In place of using a regression line, a line based on the predicted values from a logistic regression
model is used to relate the proportion saying yes to age. To obtain the curve in Figure 9.3, first we
use logistic regression to produce predicted responses. Using the option type="response" produces
predicted probabilities.

l.model=glm(cbind(sleep.mat[2,],sleep.mat[1,])~age, family=binomial)

newage.df=data.frame(age=0:40)

Generating predicted values using the original logistic reg based on 5 proportions

yhat=predict(l.model, newdata=newage.df,type="response")

plot(newage.df$age,yhat, pch=’’,type="l",ylim=c(-0.1,1.1),xlim=c(0,40),

xlab="age", ylab="Proportion Saying No")

points(age,prop.yes)

abline(h=1,lty=2)

abline(h=-0,lty=2)

Odds and Log(odds)

Plotting the logits versus age requires the logits be calculated. The odds are used to calculate the
logits after which it is very straightforward to produce the logits with R.

Logit transformed probabilities vs Age

odds = (prop.yes)/(1-prop.yes)

round(odds,4) # look at the odds

logit = log(odds)

round(logit,4) # look at the logits

> round(logit,4) # look at the logits

14 15 16 17 18

1.0408 0.8142 0.7309 0.5108 0.4180

Figure 9.4 Logit versus Age

Figure 9.4 can now be constructed as we have done in many plots previously, we have calculated
the logits by age.

plot(age,logit, ylim=c(-3,3), xlim=c(0,40),

ylab="logit(Proportion Saying Yes)", xlab="Age")

abline(lm(logit~age))

Table 9.3 Various values of π, odds, and log(odds)

Table 9.3 includes several values of π, the corresponding odds = π/(1 − π), and the log(odds)
= log(π/(1 − π)). Table 9.3 illustrates the calculation of odds and log(odds) for several different
proportions π. It can be reproduced in part using the following R code.

100 CHAPTER 9. LOGISTIC REGRESSION

> # before the command that assigns pi to a vector of values from 1/20 to 19/20,

> # when we type pi

> pi

[1] 3.141593

pi=c(1/20,1/10,1/5,1/4,1/2,3/4,4/5,9/10,19/20)

> pi # what you get is what you expected

[1] 0.05 0.10 0.20 0.25 0.50 0.75 0.80 0.90 0.95

odds=pi/(1-pi)

> round(odds,3) # look at the odds

[1] 0.053 0.111 0.250 0.333 1.000 3.000 4.000

[8] 9.000 19.000

logit = log(odds)

round(logit, 3) # look at the logits

[1] -2.944 -2.197 -1.386 -1.099 0.000 1.099 1.386 2.197 2.944

Figure 9.6 The Logistic Transformation

The logistic transformation is depicted in Figure 9.6.

plot(pi,logit,pch=’’,type="l",xlim=c(0,1),ylim=c(-4,4),

xlab="Probability", ylab="log odds")

Table 9.4 Values of π, odds, and log(odds)

We have already produced the second and third rows in Table 9.4 using R, naming them prop.yes

and logit. The fourth and fifth rows in this table use our fitted logistic regression based on the
observations for ages 14 through 18 to obtain estimated or fitted values, π̂, for ages 2 through 30.
R can help us out with this.

l.model=glm(cbind(sleep.mat[2,],sleep.mat[1,])~age, family=binomial)

agenew.df=data.frame(age=c(2,12,14:18,20,30))

Generating predicted values using the original logistic reg based on 5 proportions

xb.fit=predict(l.model, newdata=agenew.df)

xb.fit # this is row four, the estimated logits, i.e. the linear predictor bo+b1x

y.fit=predict(l.model, newdata=agenew.df, type="response")

y.fit # this is row five, the estimated probabilities

These are obtained by specifying type="response"

9.1. CHOOSING A LOGISTIC REGRESSION MODEL 101

Figure 9.7 Observed log odds p̂i versus age along with the fitted line

To construct Figure 9.7 using R, plot the estimated logits by age.

plot(agenew.df$age, xb.fit, xlab="Age",

ylab="logitProportion saying Yes",ylim=c(-3,3), xlim=c(0,40))

points(age, logit,pch=19) #pch=19 creates solid circles

abline(lm(xb.fit~agenew.df$age))

Example 9.4 Medical School: Two Versions of the Logistic Regression Model

We next take up with Example 9.4, the medical school admission example. We enter and attach
the data frame MedGPA.df. We produce Figure 9.8, the jittered scatterplot, using the following
R code. The nuance lies in the use of the jitter function. To jitter a scatterplot means to add
some random noise to the coordinates of the points, the goal being to allow us to separate points
that have the same values and would therefore be impossible for us to see as multiple points. Since
the y-variable of Acceptance is binary, there is much overlap in the points unless we jitter them a
bit. (There are instances where we might also want to jitter in the x-direction, but this is not such
a case since GPA has few replicates.) The amount argument controls the amount of variation in the
jitter. We chose amount=.05 which means that R will randomly allow deviations with a range of
±.05 of the true values (of 0 and 1). This seemed to give a result similar to the textbook’s.

> MedGPA.df <- read.csv(file=file.choose()) # choose MedGPA.csv

> attach(MedGPA.df)

> names(MedGPA.df)

[1] "Accept" "Acceptance" "Sex" "BCPM" "GPA" "VR" "PS" "WS"

[9] "BS" "MCAT" "Apps"

> table(Acceptance)

Acceptance

0 1

25 30

The key new R concept in the area of logistic regression is the use of the glm function. The glm

name is an abbreviation for “generalized linear model,” a very flexible and general statistical
method for fitting models to response-explanatory variable situations that do not conform to the
somewhat strict conditions of the linear model or lm function. So, if error terms are non-normal or
if variance is not constant, one will often find the glm function to be useful.

We use the glm function with the family=binomial argument to obtain the logistic regression
model for predicting the probability of acceptance to medical school (the response variable) from
the student’s GPA (the explanatory variable). Note: For the response variable we use the numeric
0-1 variable Acceptance rather than the character variable Accept. The glm function demands a
numeric response variable.

102 CHAPTER 9. LOGISTIC REGRESSION

Note the summary(Med.glm1) command produces the regression style output that agrees with
the Minitab output in the text. To produce the confidence interval for the odds ratio we add
the command confint(Med.glm1). Notice that the confidence interval for the odds ratio that
R produces differs from that produced by Minitab. This is because R uses a more sophisticated
procedure to calculate a confidence interval for the slope.

Figure 9.8(a) Data for ordinary and logistic regression

The two graphs in Figure 9.8:

> plot(GPA, MCAT) # no need for jitter here, values of GPA differ

> abline(lm(MCAT~GPA)) # add the regression line

> med.glm1=glm(Acceptance~GPA, family=binomial)

> b0=coef(med.glm1)[1]

> b1=coef(med.glm1)[2]

> summary(med.glm1)

> plot(GPA, jitter(Acceptance,amount=.05),ylab="Acceptance")

the amount argument controls the

level of vertical variation.

> curve(exp(b0+b1*x)/(1+exp(b0+b1*x)),add=T)

Make sure you use Acceptance rather than Accept for the response variable.

> Med.glm1 <- glm(Acceptance ~ GPA, family=binomial)

> summary(Med.glm1)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7805 -0.8522 0.4407 0.7819 2.0967

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -19.207 5.629 -3.412 0.000644 ***

GPA 5.454 1.579 3.454 0.000553 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 56.839 on 53 degrees of freedom

AIC: 60.839

9.2. LOGISTIC REGRESSION AND ODDS RATIOS 103

Later in this section of the text, confidence limits are computed for the coefficient associated
with GPA. Minitab output included in the text uses the estimate of the coefficient, 5.45417 ±
1.96*1.57931 which is exponentiated to give a confidence interval for the odds ratio. Alternatively,
R users can use the confint command to obtain a confidence interval for the coefficient on GPA.
These values are close but differ slightly from the Minitab limits. However, for the confidence
interval for the odds ratio, a different algorithm is used and it yields limits on the odds ratio that
appear to be quite different from Minitab. The Minitab interval given in the textbook is 10.58
to 5164.74, while that given below by R is 14.83 to 7829.25. The Minitab interval uses the Wald
statistic given in the summary table and a simple standard normal approximation, while R uses a
fancier method chosen by R’s statistical computing experts. It is hard to say which result to put
one’s faith in and this difference is a fairly large shift to the right between the Minitab and the R.
(Note: The second line below about “profiling” is some clue to the method R uses.)

> confint(Med.glm1)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -31.713266 -9.376103

GPA 2.696316 8.965621

> exp(confint(med.glm1))

2.5 % 97.5 %

(Intercept) 1.686955e-14 8.472476e-05

GPA 1.482501e+01 7.829246e+03

9.2 Logistic Regression and Odds Ratios

Odds and Odds Ratios

In Example 9.6 on zapping migraines we already discussed odds ratios in logistic regression, using
both the glm and the confint functions. If one has simple two-by-two tables such as in Ex-
amples 9.6, 9.7, or 9.8, then it is almost simpler to just calculate odds ratios with a hand-held
calculator. We can always use R as a calculator, as given below.

First, we create the table called zap.tab. In R, a table is a data type, just as data frames, vectors,
or objects created by a call to something like the lm function are. In particular, a table has features
that distinguish it from a matrix, even though it resembles a matrix and shares some characteristics
such as dimension. In the first line of code, we create a matrix of the 4 numbers using the matrix
function, but use as.table to interpret it as a table instead. Any table includes row and column
names or headings, which are character strings. The default names here would be “A” and “B” for
each, but we have more useful names in mind. The second line of code defines the row headings to
be “Pain Free” and “Not Pain Free”; the third line of code creates the column headings of “TMS”
and “Placebo.” The next line of code simply asks R to do the arithmetic to compute the odds
ratio. Note, for example, that zap.tab[1,1] simply refers to the (1,1) entry of the table, which is

104 CHAPTER 9. LOGISTIC REGRESSION

the 39. Finally, the last line of code defines a function or (standing for odds ratio) that assumes
a simple two-by-two table or matrix, called x as the argument and computes the odds ratio of it.
We include one function call to illustrate we get the same results as we get by hand.

> zap.tab <- as.table(matrix(c(39,61,22,78),nrow=2))

> dimnames(zap.tab)[[1]] <- c("Pain Free","Not Pain Free")

> dimnames(zap.tab)[[2]] <- c("TMS","Placebo")

> zap.tab

TMS Placebo

Pain Free 39 22

Not Pain Free 61 78

> is.table(zap.tab)

[1] TRUE

> zap.tab[1,1]*zap.tab[2,2]/(zap.tab[1,2]*zap.tab[2,1])

[1] 2.266766

Define an odds ratio function; x is 2-by-2 table or matrix.

> or <- function(x) x[1,1]*x[2,2]/(x[1,2]*x[2,1])

> or(zap.tab) # Use new function on previous example.

[1] 2.266766 # Note agreement.

Slope and Odds Ratios when the Predictor is Quantitative

Next we take up Example 9.10, the golf-putting example. After entering the data frame with the
read.csv function, we form the tabular summary in Table 9.5 using the table function. The
table function cross-tabulates the data using the variables given in the two arguments. The first
variable listed becomes the row variable, and the second becomes the column variable.

> Putts1.df <- read.csv(file=file.choose())

> names(Putts1.df)

[1] "Length" "Made"

> attach(Putts1.df)

> table(Made,Length) #Create a table by cross-tabulating Made and Length

Length

Made 3 4 5 6 7

0 17 31 47 64 90

1 84 88 61 61 44

9.2. LOGISTIC REGRESSION AND ODDS RATIOS 105

If we insist on making the table look more like Table 9.5 we can use the code below. In defining
the object a we create the same table as above, but reversing the two rows using the c(2,1) selec-
tion. We then create a vector of column sums using the apply function; the 2 value in the second
argument tells R to perform a column-wise operation, and the sum in the third argument tells R
to use addition as the operation; hence, column sums. Then we create the table named tab using
rbind. This function row-binds the two inputs, meaning it combines the table a with the vector b
by appending b as a third row, exactly as we want. The final step changes the row names of tab
to more transparent names.

> a <- table(Made,Length)[c(2,1),] #a is the table with rows reversed

> b <- apply(a,2,sum) # find the column sums of the table

> tab <- rbind(a,b) # add the column sums as the bottom row of the table

> row.names(tab) <- c("successes","failures","total") # re-define row names

> tab # print out the table

3 4 5 6 7

successes 84 88 61 61 44

failures 17 31 47 64 90

total 101 119 108 125 134

Next, we compute the logistic model and assign it the name Putts.glm1 using the glm function.
The results of summary(Putts.glm1) agree with those in the text, which were computed with R.
We also include the confidence interval for the odds ratio, obtained with confint(Putts.glm1).
We don’t include the Minitab output here or in the text, but this time the confidence intervals are,
to two decimal places, identical between the two software packages.

> Putts.glm1 <- glm(Made ~ Length, family=binomial)

> summary(Putts.glm1)

Call:

glm(formula = Made ~ Length, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8705 -1.1186 0.6181 1.0026 1.4882

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.25684 0.36893 8.828 <2e-16 ***

Length -0.56614 0.06747 -8.391 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

106 CHAPTER 9. LOGISTIC REGRESSION

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 800.21 on 586 degrees of freedom

Residual deviance: 719.89 on 585 degrees of freedom

AIC: 723.89

Number of Fisher Scoring iterations: 4

> exp(confint(Putts.glm1)) # confint produces CIs for beta, so

we need to exponentiate that interval.

2.5 % 97.5 %

(Intercept) 12.7974573 54.4505172

Length 0.4960611 0.6464444

Medical School Example: GPA*10

As noted in the text, a metric for GPA which will produce more reasonable values for the odds
ratio and its confidence limits can be found by multiplying GPA by 10. Now we find that although
the confidence limits for the odds ratios differ between Minitab and R, the difference is not quite
so dramatic. The Minitab limits in the text are 1.27 to 2.35, while the R limits below are 1.31 to
2.45. The R interval is only slightly shifted to the right this time.

> med.glm2=glm(Acceptance~GPA10, family=binomial)

> summary(med.glm2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7805 -0.8522 0.4407 0.7819 2.0967

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -19.2065 5.6287 -3.412 0.000644 ***

GPA10 0.5454 0.1579 3.454 0.000553 ***

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 56.839 on 53 degrees of freedom

AIC: 60.839

9.3. ASSESSING THE LOGISTIC REGRESSION MODEL 107

> confint(med.glm2)

2.5 % 97.5 %

(Intercept) -31.7132662 -9.3761026

GPA10 0.2696316 0.8965621

> exp(confint(med.glm2))

2.5 % 97.5 %

(Intercept) 1.686955e-14 8.472476e-05

GPA10 1.309482e+00 2.451162e+00

9.3 Assessing the Logistic Regression Model

Empirical Logit Plots

We now consider Figure 9.13. Figure 9.13 is disappointing as a diagnostic tool, as with just 55
data points 9 bins cannot adequately convey the characteristic logistic shape we would like. This
disappointment evinces the book’s assertion that “diagnostic plots will not be nearly as useful in
logistic regression as we found them to be in ordinary regression.” There can be occasions when
such a plot could work better, for example, when the dataset is large. We present here code to
produce our figure. (Crawley[page 597] provides code for an empirical logit plot that is defined
slightly differently from ours.)

The R code below reproduces Table 9.6 and the right-hand figure in Figure 9.13. Before explaining
the code, it might be useful to understand better how the two R functions sort and order work.

Consider the small example below. foo is a vector of integers as shown. The sort function
creates a new vector in increasing order using the elements from foo. The order function gives the
positions or indices for a vector of length 6 where one can find the sorted version. For example, the
first element in order(foo) is 3, which indicates that the smallest element of foo occurs in position
3. The next element in order(foo) is 2, which indicates that the second smallest element of foo
occurs in position 2. The next element in order(foo) is 6, which indicates that the third smallest
element in foo is in position 6. And so on. Now we can see why the code foo[order(foo)] returns
the sorted vector: the order(foo) argument gives the subscripts of foo that we want extracted.
And order creates the vector of subscripts 1 through 6 in precisely the order that sorts the vector.

> foo

[1] 6 2 1 5 4 3

> sort(foo)

[1] 1 2 3 4 5 6

> order(foo)

[1] 3 2 6 5 4 1

> foo[order(foo)]

[1] 1 2 3 4 5 6

108 CHAPTER 9. LOGISTIC REGRESSION

Now, we can better understand that first, important step in the following code. We create a version
of the MedGPA.df data frame that is sorted, row-wise, by the GPA variable. The rest of the code
creates a matrix of values, x.mat, of which the first row is the smallest 11 values of GPA, the
second row is the next smallest, and so on. Then we compute means, number of yes, number of
no, proportions, adjusted proportions, and logits to essentially replicate the table. From there we
make the scatterplot and the added line.

First, form a version of MedGPA.df, sorted by the GPA variable.

We use the order function

sorted.MedGPA.df <- MedGPA.df[order(MedGPA.df$GPA),]

x <- sorted.MedGPA.df$GPA

y <- sorted.MedGPA.df$Acceptance

x.mat <- matrix(x,ncol=11,nrow=5, byrow=T)

x.means <- apply(x.mat,1,mean)

y.mat <- matrix(y,ncol=11,nrow=5, byrow=T)

y.yes <- apply(y.mat,1,sum)

y.no <- 11-y.yes

y.prop <- y.yes/(y.yes + y.no)

y.prop.adj <- (.5+y.yes)/(1+y.yes+y.no)

y.logit.adj <- log(y.prop.adj/ (1-y.prop.adj))

plot(x.means,y.logit.adj,xlab="GPA", ylab = "adjusted logit")

abline(lm(y.logit.adj ~ x.means))

9.4 Formal Inference: Tests and Intervals

We proceed to describe the R code for producing the formal inference for the 2 examples of this
section. From the output we produce with this simple R code, the various by-hand calculations
given in the text are at your fingertips.

First, we look at Example 9.4, using GPA10 as the predictor, where two lines produce the basic
logistic model output.

> attach(MedGPA.df)

> model1 <- glm(Acceptance ~ GPA10, family=binomial)

> summary(model1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -19.2065 5.6287 -3.412 0.000644 ***

GPA10 0.5454 0.1579 3.454 0.000553 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

9.4. FORMAL INFERENCE: TESTS AND INTERVALS 109

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 56.839 on 53 degrees of freedom

AIC: 60.839

Next, we do a similar thing for Example 9.10, the golf example.

> attach(Putts1.df)

> model2 <- glm(Made ~ Length, family=binomial)

> summary(model2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.25684 0.36893 8.828 <2e-16 ***

Length -0.56614 0.06747 -8.391 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 800.21 on 586 degrees of freedom

Residual deviance: 719.89 on 585 degrees of freedom

AIC: 723.89

Binary Predictors

Finally, we end with the zapping migraines example. We do not have the raw data, but only the
data in the form of a 2-by-2 table, which we have called zap.tab. This is sufficient to build the
appropriate R code, and we give it, along with output, below. Notice the results agree with the
Minitab results from the text.

> zap.tab

TMS Placebo

Pain Free 39 22

Not Pain Free 61 78

> Treatment <- c(1,0)

> model <- glm(cbind(zap.tab[1,],zap.tab[2,]) ~ Treatment, family=binomial)

> summary(model)

110 CHAPTER 9. LOGISTIC REGRESSION

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.2657 0.2414 -5.243 1.58e-07 ***

Treatment 0.8184 0.3167 2.584 0.00977 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.8854 on 1 degrees of freedom

CHAPTER 10

Multiple Logistic Regression

10.1 Overview

We now describe the use of R for multiple logistic regression topics. In a way, the methods we learn
here will reflect the kind of transition we saw in going from simple linear regression to multiple
linear regression. The main function for fitting models will still, however, be glm.

Our focus in this chapter will be on fitting models from which one can assess models with the
nested LRT test and in this way build to a good final model. (The exception to this will be an
early digression to show how one can control graphical input in R.) The text shows a series of
empirical logit plots for the purpose of building conceptual understanding. Since our exercises do
not require those of you, we will dispense with them in this chapter. (We gave an example in the
previous chapter, along with a reference to Crawley, should you want to explore this more on your
own.)

10.2 Choosing, Fitting, and Interpreting Models

We begin with Example 10.1 about the Corporate Average Fuel Economy (CAFE) bill. The code
below defines the data frame CAFE.df, attaches it, and prints out variable names. We then, in that
fourth line of code, replicate Figure 10.1, the comparative dotplot. We have suppressed including
this plot in this document, because we want to use this opportunity to digress to an illustration
of how R can fine tune a graph. (You might want to look at the simple graph before proceeding.)
The main problems with the simple graph are:

• The points overlap so much it is hard to distinguish them;

• We prefer black to blue plotting symbols; and

• Like the text, we prefer to exclude the lone Independent Senator from the graph.

111

112 CHAPTER 10. MULTIPLE LOGISTIC REGRESSION

> CAFE.df <- read.csv(file=file.choose()) # choose CAFE.csv

> attach(CAFE.df)

> names(CAFE.df)

[1] "Senator" "State" "Party" "Contribution" "LogContr" "Dem" "Vote"

> library(lattice)

> xyplot(Contribution ~ Party,col=1) # First, unsatisfactory attempt: graph not included!

The col=1 argument will change the plotting symbol to black. To eliminate the sole Independent
Senator, we define new x and y vectors (of length 99, rather than 100) that expunge the offending
Senator; note the use of the ! symbol in the extraction statement Party[!Party=="I"], standing
for the logical not operation. That is, x is defined as all elements in the Party vector that are not
Independents, and y is defined as all elements of Contribution that are not associated with that
Independent Senator. We then ask for a plot of just Democrats and Republicans, but we decided
to suppress this graph, so we can add some jitter in the horizontal direction to allow us to visually
separate points better.

> x <- Party[!Party == "I"]

> length(Party)

[1] 100

> length(x)

[1] 99

> y <- Contribution[!Party == "I"]

> length(y)

[1] 99

> xyplot(y ~ x,col=1)

There is a problem with adding jitter in the x-direction: the x-variable is not numeric. Thus, we
decide to switch from the xyplot function to the plot function so we can employ techniques we
have seen before. First, we plot a jittered version of the x variable but interpret it as a numeric vec-
tor, using the as.numeric function. The result of as.numeric(x) would be to change Democrats
to 1s, Independents (of which there are none in x) to 2s, and Republicans to 3s. If we did a simple
plot of jittered x versus y we would get noninformative numeric x-axis labels, which we do not
want.

By using the xlab and ylab arguments, we get axis labels to our liking. The xaxt="n" argument
suppresses the x-axis labelling of tick marks, which would have been those noninformative numeric
values 1, 2, and 3. Then, we follow up with a call to the axis function that attaches the label Dem
where the number 1 would be—think of the 1 as there, even though its printing was suppressed—
an empty label at the number 2, and a Rep label at the number 3. Finally, the tck=0 argument
just tells R that we prefer not to have tick marks; technically, we have drawn tick marks of length
0. All of this jittering and axis control is, perhaps, a bit fussy, but we include it to illustrate, once
again, the power of R to exert fine control over graphs. The reader can also view this fussiness as

10.2. CHOOSING, FITTING, AND INTERPRETING MODELS 113

0
40

00
0

80
00

0
12

00
00

Party

C
on

tr
ib

ut
io

n

Dem Rep

Figure 10.1: Contributions by Party

optional and opt instead for the initial plot. Notice, again, that the dotplot we obtain looks quite
different from a Minitab dotplot.

> plot(jitter(as.numeric(x),amount=.05),y,col=1,

xlab=’Party’,ylab=’Contribution’,xaxt="n")

> axis(1,1:3, labels=c("Dem","","Rep"),tck=0)

We now do some model fitting.

> model1 <- glm(Vote ~ log(1+Contribution) + Dem, family=binomial)

> summary(model1)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2370 -0.8185 0.4291 0.5514 2.9891

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.5547 1.8651 -1.370 0.170769

log(1 + Contribution) 0.4833 0.1964 2.460 0.013884 *

Dem -1.9012 0.5594 -3.399 0.000677 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

114 CHAPTER 10. MULTIPLE LOGISTIC REGRESSION

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 132.813 on 99 degrees of freedom

Residual deviance: 93.226 on 97 degrees of freedom

AIC: 99.226

Is there an interaction?
We next replicate the model with an interaction term. We include the code below. The I() in the
model definition turns out to be unnecessary here because the model contains the lower order linear
terms that would be implied by the special meaning of the * if the expression had just been as
LogContr*Dem. We include the I() because we want to remind ourselves that here we are literally
thinking of variable multiplication.

> CAFE.glm2 <- glm(Vote ~ LogContr + Dem + I(LogContr*Dem), family=binomial)

> summary(CAFE.glm2)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5711 -0.6419 0.3023 0.5631 2.2532

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.164 5.401 -1.882 0.0599 .

LogContr 3.002 1.357 2.212 0.0270 *

Dem 2.544 5.974 0.426 0.6703

I(LogContr * Dem) -1.088 1.515 -0.719 0.4724

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 132.813 on 99 degrees of freedom

Residual deviance: 86.781 on 96 degrees of freedom

AIC: 94.781

Number of Fisher Scoring iterations: 5

10.4 Formal Inference: Tests and Intervals

We use model1 from the CAFE example above to compute tests and confidence intervals. We
repeat the output from the fitted model and then use confint to compute confidence intervals.
The salient command below is exp(confint(model1)). Notice that the confidence intervals differ
slightly from those given in the book. The book intervals are using the Wald z-statistic while

10.4. FORMAL INFERENCE: TESTS AND INTERVALS 115

confint uses a method called profile likelihood. The latter method is generally more trustworthy
in cases where the two answers differ. So, for example, the 95% confidence intervals for the Dem

coefficient are −2.997 to −0.805 in the text and −3.0639695 to −0.8428995 below. These are not
wildly different but still maybe different enough to question which one to prefer.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.5547 1.8651 -1.370 0.170769

log(1 + Contribution) 0.4833 0.1964 2.460 0.013884 *

Dem -1.9012 0.5594 -3.399 0.000677 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 132.813 on 99 degrees of freedom

Residual deviance: 93.226 on 97 degrees of freedom

confidence intervals using "profile likelihood" rather than Wald z-statistic

> confint(model1)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) -6.5903459 0.6331929

log(1 + Contribution) 0.1572700 0.9136299

Dem -3.0639695 -0.8428995

We turn now to Example 10.9 and give the code for the rather complicated model entertained
there. Here we give the code to create that output.

> model <- glm(Acceptance ~ Fem + GPA + I(GPA^2)

+ Fem:GPA + Fem:I(GPA^2),family=binomial)

> summary(model)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8864 -0.8632 0.1388 0.6758 2.2370

116 CHAPTER 10. MULTIPLE LOGISTIC REGRESSION

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 53.4790 55.2279 0.968 0.333

Fem 9.7948 162.0299 0.060 0.952

GPA -37.0418 32.8472 -1.128 0.259

I(GPA^2) 6.1276 4.8571 1.262 0.207

Fem:GPA -5.9204 93.4748 -0.063 0.949

Fem:I(GPA^2) 0.9993 13.4642 0.074 0.941

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 52.066 on 49 degrees of freedom

We now proceed to Example 10.12, where several models are fit for the medical school acceptance
data in order to build a good, final model. The fits in this example suffice to cover any model-
building situations you will typically encounter. The text explains how to use the output to perform
the desired nested LRT tests. Since the R Companion’s goal is to teach about R, we will show a
short series of model fits, with corresponding output, just to illustrate how one can get the con-
situent pieces (which the book illustrates quite fully) for doing nested LRT tests and model building.

(a) One predictor.

The code below provides the one of the three models fitting to a single predictor. We chose the
GPA predictor.

> model1 <- glm(Acceptance ~ GPA, family=binomial)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -19.207 5.629 -3.412 0.000644 ***

GPA 5.454 1.579 3.454 0.000553 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 56.839 on 53 degrees of freedom

AIC: 60.839

(b) Adding a second predictor.

Next, we create a couple of two-predictor models. The model2 below uses GPA and MCAT in an
additive two-predictor model. The residual deviance of 54.014 is the full model deviance in the

10.4. FORMAL INFERENCE: TESTS AND INTERVALS 117

book, and the reduced model deviance of 56.839 is the residual deviance from the previous model1
above.

> model2 <- glm(Acceptance ~ GPA + MCAT, family=binomial)

> summary(model2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7132 -0.8132 0.3136 0.7663 1.9933

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -22.3727 6.4538 -3.467 0.000527 ***

GPA 4.6765 1.6416 2.849 0.004389 **

MCAT 0.1645 0.1032 1.595 0.110786

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 54.014 on 52 degrees of freedom

In model3 we again encounter the I() operator to indicate to R that we want the mathematical
function of squaring a variable.

> model3 <- glm(Acceptance ~ GPA + I(GPA^2), family=binomial)

> summary(model3)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8363 -0.8020 0.3207 0.7830 1.9553

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 33.332 45.275 0.736 0.462

GPA -24.752 26.366 -0.939 0.348

I(GPA^2) 4.325 3.832 1.128 0.259

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 55.800 on 52 degrees of freedom

AIC: 61.8

118 CHAPTER 10. MULTIPLE LOGISTIC REGRESSION

We then fit a model that is additive in three predictors and call this model4.

> model4 <- glm(Acceptance ~ GPA + MCAT + Fem, family=binomial)

> summary(model4)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0326 -0.8439 0.2524 0.6130 2.1607

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -25.2431 7.2019 -3.505 0.000456 ***

GPA 5.1392 1.8508 2.777 0.005491 **

MCAT 0.1809 0.1080 1.675 0.093946 .

Fem 1.2580 0.7303 1.723 0.084965 .

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 50.786 on 51 degrees of freedom

AIC: 58.786

Finally, we fit model5, using the notation Fem:MCAT for the interaction term. (Alternatively, one
can use I(Fem*MCAT).)

> model5 <- glm(Acceptance ~ GPA + MCAT + Fem + Fem:MCAT, family=binomial)

> summary(model5)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.8644 -0.9001 0.2219 0.6508 2.1709

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -34.4369 11.3066 -3.046 0.00232 **

GPA 5.8178 2.0661 2.816 0.00486 **

MCAT 0.3661 0.1937 1.890 0.05880 .

Fem 12.8878 8.9405 1.442 0.14944

MCAT:Fem -0.3214 0.2447 -1.313 0.18905

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

10.5. CASE STUDY: BIRD NESTS 119

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom

Residual deviance: 48.849 on 50 degrees of freedom

AIC: 58.849

10.5 Case Study: Bird Nests

The modeling in the bird nests study should be fairly straightforward applications of the type of
code explained earlier in the chapter, but we will show here the R code for producing the boxplots
of Figure 10.18. The command par(mfrow=c(1,2)) sets up a 1 by 2 panel for the 2 separate
boxplots to go into. In the calls to the boxplot function, we use a model statement as the input,
rather than the pair of vectors option. So, for example, Length ∼ Closed creates a model that
splits the Lengths into two groups, based on the values (0 or 1) of Closed; exactly what we want.
Notice the use of the main argument to add headings to the graphs.

> par(mfrow=c(1,2)) # set up a two-panel window for two boxplots

> attach(BirdNest.df) # attach the dataset

> boxplot(Length~Closed,main="Length")

> boxplot(TotCare~Closed,main="TotCare")

CHAPTER 11

Logistic Regression: Additional Topics

This chapter of the Companion describes R procedure for handling the additional topics of logistic
regression covered in Chapter 11. We again let the textbook’s examples drive the exposition in this
Companion. The first section of the chapter, Section 11.1 does not involve any computation, so we
go on to the next section.

11.2 Assessing Logistic Regression Models

Example 11.2: Putting

The code below reproduces the calculations for this putting example. We include R code for con-
structing a table that includes empirical and estimated proportions and empirical and estimated
logits. We also include R code to fit the linear logistic and the saturated models to these data.
Keep in mind that we need to enter the data into the glm function as binomial data, that is, as
counts of makes and misses.

After attaching the data frame, we recreate a table of makes and misses, which we call a. From
this we create a table of column proportions, which we name col.props and then rename b after
rounding proportions to 3 places. The line that defines col.props uses the R function prop.table

where the 2 argument refers to columns; an argument value of 1 would give row proportions.

We next define a vector of empirical logits, which we denote by c. The code
d <- tapply(Putts.glm1$fitted,Length,unique) bears explanation. The tapply function takes
the vector Putts.glm1$fitted of fitted values from the linear logistic model, uses the Length vari-
able as a “by” variable, and performs the unique function for each value of Length. The unique
function takes a vector as input and returns a vector consisting of each unique value listed just
once. For example, unique(c(1,2,2,3,3,3)) would return a value of 1 2 3. But since for each
value of Length we know there is only one fitted value, this line of code returns a single fitted value
for each length of putt. We complete this section of code by defining the table table11.2 using
the rbind function, which combines a set of tables or vectors row-wise.

121

122 CHAPTER 11. LOGISTIC REGRESSION: ADDITIONAL TOPICS

> attach(Putts1.df)

> names(Putts1.df)

[1] "Length" "Made"

> a <- table(Made,Length)[c(2,1),] #a is the table with rows reversed

> a

Length

Made 3 4 5 6 7

1 84 88 61 61 44

0 17 31 47 64 90

> col.props <- prop.table(a,2) # compute column proportions

> col.props

Length

Made 3 4 5 6 7

1 0.8316832 0.7394958 0.5648148 0.488 0.3283582

0 0.1683168 0.2605042 0.4351852 0.512 0.6716418

> b <- round(col.props,3) # Round column proportions, put into b

> b

Length

Made 3 4 5 6 7

1 0.832 0.739 0.565 0.488 0.328

0 0.168 0.261 0.435 0.512 0.672

> c <- log(b[1,]/(1-b[1,])) # Compute column-wise logits

> c

3 4 5 6 7

1.59986846 1.04077751 0.26147970 -0.04800922 -0.71724473

> round(c,2) # Round logits

3 4 5 6 7

1.60 1.04 0.26 -0.05 -0.72

11.2. ASSESSING LOGISTIC REGRESSION MODELS 123

For each Length, the fitted value is identical, so

the unique function gives this value for each Length.

> d <- tapply(Putts.glm1$fitted,Length,unique)

> d

3 4 5 6 7

0.8261256 0.7295364 0.6049492 0.4650541 0.3304493

> round(d,3) # Round to 3 places, as in text

3 4 5 6 7

0.826 0.730 0.605 0.465 0.330

> e <- log(d/(1-d))

> e

3 4 5 6 7

1.5584133 0.9922716 0.4261300 -0.1400117 -0.7061534

> round(e,3)

3 4 5 6 7

1.558 0.992 0.426 -0.140 -0.706

Now, reproduce Table 11.2:

> table11.2 <- rbind(b[1,],round(c,2),round(d,3),round(e,3))

> row.names(table11.2) <- c("Saturated Prob Est","Logits of Satur Est",

"Prob Est. (Model)","Logit Est. (Model)")

> table11.2

3 4 5 6 7

Saturated Prob Est 0.832 0.739 0.565 0.488 0.328

Logits of Satur Est 1.600 1.040 0.260 -0.050 -0.720

Prob Est. (Model) 0.826 0.730 0.605 0.465 0.330

Logit Est. (Model) 1.558 0.992 0.426 -0.140 -0.706

Now we reproduce the logistic model given in the text, where we enter the data as binomial counts,
and model putt success against putt length. The code is below, and we note that the output agrees
with that in the text.

> a

Length

Made 3 4 5 6 7

1 84 88 61 61 44

0 17 31 47 64 90

> Makes <- a[1,]

124 CHAPTER 11. LOGISTIC REGRESSION: ADDITIONAL TOPICS

> Misses <- a[2,]

> Lengths <- 3:7

> model1 <- glm(cbind(Makes,Misses) ~ Lengths, family=binomial)

> summary(model1)

Deviance Residuals:

3 4 5 6 7

0.14800 0.24555 -0.84871 0.51388 -0.05149

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.25684 0.36893 8.828 <2e-16 ***

Lengths -0.56614 0.06747 -8.391 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 81.3865 on 4 degrees of freedom

Residual deviance: 1.0692 on 3 degrees of freedom

AIC: 30.175

Next, we reproduce the saturated model by treating each putt length as a separate factor and thus
fitting a separate probability of success for each length. We see the residual deviances from these
two chunks of R output that allow us to compute the “drop in deviance” test explained in the text.

> model2 <- glm(cbind(Makes, Misses) ~ factor(Lengths), family=binomial)

> summary(model2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.5976 0.2659 6.007 1.89e-09 ***

factor(Lengths)4 -0.5543 0.3382 -1.639 0.101

factor(Lengths)5 -1.3369 0.3292 -4.061 4.90e-05 ***

factor(Lengths)6 -1.6456 0.3205 -5.134 2.84e-07 ***

factor(Lengths)7 -2.3132 0.3234 -7.154 8.46e-13 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.1387e+01 on 4 degrees of freedom

Residual deviance: 5.3291e-15 on 0 degrees of freedom

AIC: 35.106

11.2. ASSESSING LOGISTIC REGRESSION MODELS 125

Example 11.4: Another putting dataset

After reading in and attaching the Putts2.df dataset, we fit the logistic models whose R code is
given in the text. Recall that overdispersion is the issue here. The code below fits the model using
the family=binomial argument, which replicates the overdispersion example of the text. This we
follow with the refit of the model using the family=quasibinomial, which gives the model that
adjusts the fit for the overdispersion. Since the output in the text was produced by R code, it is
not surprising that our output agrees with the text.

> Putts2.df <- read.csv(file=file.choose())

> names(Putts2.df)

[1] "Length" "Made" "Missed" "Trials"

> Makes <- c(79,94,60,65,40)

> Misses <- c(22,25,48,60,94)

> Putts3.df <-data.frame(Makes, Misses)

> names(Putts3.df)

> attach(Putts3.df)

> Putts.glm3 <- glm(cbind(Makes,Misses) ~ Lengths, family=binomial)

> summary(Putts.glm3)

Deviance Residuals:

1 2 3 4 5

-1.131 1.522 -1.043 1.230 -0.793

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.25684 0.36893 8.828 <2e-16 ***

Lengths -0.56614 0.06747 -8.391 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 87.1429 on 4 degrees of freedom

Residual deviance: 6.8257 on 3 degrees of freedom

AIC: 35.93

> Putts.glm4 <- glm(cbind(Makes,Misses) ~ Lengths, family=quasibinomial)

> summary(Putts.glm4)

126 CHAPTER 11. LOGISTIC REGRESSION: ADDITIONAL TOPICS

Deviance Residuals:

1 2 3 4 5

-1.131 1.522 -1.043 1.230 -0.793

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.2568 0.5552 5.866 0.00988 **

Lengths -0.5661 0.1015 -5.576 0.01139 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasibinomial family taken to be 2.264714)

Null deviance: 87.1429 on 4 degrees of freedom

Residual deviance: 6.8257 on 3 degrees of freedom

Residual Diagnostics: Assessing the Conditions

We begin with Example 11.5, which refers us back to the model we called CAFE.glm, a logistic
model of Vote on LogContr and Dem. We include the summary output below.

Call:

glm(formula = Vote ~ LogContr + Dem, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4117 -0.6570 0.3600 0.5622 2.3625

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.8402 2.4903 -2.747 0.006020 **

LogContr 2.1659 0.6131 3.533 0.000411 ***

Dem -1.7328 0.5804 -2.985 0.002833 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 132.813 on 99 degrees of freedom

Residual deviance: 87.336 on 97 degrees of freedom

AIC: 93.36

We now give the code that produces the residual plot using Pearson residuals and lets us identify
outlying points by the Senator involved.

11.2. ASSESSING LOGISTIC REGRESSION MODELS 127

0 20 40 60 80 100

−
4

−
2

0
2

4

Index

re
si

du
al

s(
C

A
F

E
.g

lm
, t

yp
e

=
 "

pe
ar

so
n"

)

Figure 11.1: CAFE.glm model residuals with two outliers labeled

attach(CAFE.df)

plot(residuals(CAFE.glm,type="pearson"))

identify(residuals(CAFE.glm,type="pearson"),label=Senator)

Assessing Prediction

Table 11.5 is worth reproducing, since the graphic is such a simple way of assessing the predictive
success of a fitted model. We give the R code below, with this explanation. First, we refit the
model Med.glm3; if you saved it from earlier, you could dispense with these lines of code. Then we
define the vector Accept.hat, or predicted acceptances to medical school based upon an estimated
probability of success greater than .5. We then form the 2× 2 Table 11.5 using the table function.
Note the agreement with the text. Finally, we rename the row headings to make the table a bit
more transparent.

Re-fit a model discussed earlier.

> attach(MedGPA.df)

> Med.glm3 <- glm(Acceptance ~ MCAT + GPA10, family=binomial)

> summary(Med.glm3) # We suppress the output, which we have seen earlier.

> Accept.hat <- Med.glm3$fitted > .5 # Define predicted acceptances

> attach(MedGPA.df)

> table(Acceptance,Accept.hat) # Obtain prediction assessment table

Accept.hat # Note agreement with text

128 CHAPTER 11. LOGISTIC REGRESSION: ADDITIONAL TOPICS

Acceptance FALSE TRUE

0 18 7

1 7 23

Make the output more transparent.

> tab <- table(Acceptance,Accept.hat)

> row.names(tab)

[1] "0" "1"

> row.names(tab) <- c("Deny","Accept")

> tab

Accept.hat

Acceptance FALSE TRUE

Deny 18 7

Accept 7 23

11.3 Randomization Tests

We describe now the R code for Example 11.6. The first randomization test uses the binary Sex

variable as the predictor. The table shows that the males were more likely to improve, with an
odds ratio of 3 = (9*2)/(6*1). This will be the benchmark odds ratio against which our randomly
created datasets will be compared.

We begin by defining the two variables and creating the table arch.tab. We define then an odds
ratio function, or, and verify the odds ratio of 3. The randomization part follows. Since we have not
talked much about writing programs in the Companion we will take this a bit more slowly than usual.

First, we put the odds ratio for the original data into a variable called TestStat0. The n.samples
<- 100000 line says we are going to do a repetitive task 100000 times. It is always a good idea,
when writing such code, to start out with a really small value for the number of iterations. This
is not complicated code, but we still proceeded cautiously and used n.samples <- 10 as we tried
out the work. The book explains the idea, but in the spirit of “repetition is the salt and pepper
of life,” we will say it again, and slowly. The code between the two comments about begin and
end of the loop is called a “for loop.” The line for (i in 1:n.samples) says that all the code
between the pair of curly braces that follows will be executed n.samples times (in our case 100000).

Each time through the code something changes and something is recorded. Here is what changes.
Imagine the original data set of the 40 values of improve, a vector here of 40 0s and 1s, alongside
(column-wise, you may imagine) the 40 values of the female vector of 0s and 1s. The null hy-
pothesis says the two variables are unrelated to one another, so within each iteration we permute
completely at random the 40 female values, as if they were meaningless labels (which is what the
null says they are). With any given permutation, you can imagine a new data set: the 40 improve

values in the same order, but the 40 female values in a new and random order. Now, re-form the

11.3. RANDOMIZATION TESTS 129

2× 2 table of counts and compute the odds ratio again. Put this odds ratio into a vector of length
n.samples (100000, in our case) that we decide to call TestStat.

This iterative process of randomly generated odds ratios is repeated n.samples times. At the end
of this process TestStat should have n.samples values of which our original odds ratio, TestStat0
should look kind of middle-of-the-pack if the null really is true. Thus, we compute the p-value by
counting out how many values of TestStat are greater than or equal to TestStat0, as always with
a p-value, getting a measure of how extreme our data look; small p-value, more extreme. The
p-value we get is somewhat more significant than found in the text, namely .4091. Still, we would
deem the relationship here to be clearly nonsignificant.

assume the data are in data frame archery.df

> female <- as.numeric(archery.df$=="f") # indicator for female

> improve <- as.numeric(archery.df$Improvement > 0)

#indicator for a positive improvement

> arch.tab

female

improve FALSE TRUE

FALSE 1 2

TRUE 9 6

> or <- function(x) (x[1,2]*x[2,1])/(x[2,2]*x[1,1])

> or(arch.tab)

[1] 3

dataset <- data.frame(improve,female)

attach(dataset) # attach dataset so we can refer easily

to its variables.

First we compute and record at TestStat0 the odds ratio

test statistic for the original two-way table (the 3):

TestStat0 <- or(arch.tab)

We set n.samples, which is the number of random permutations

we choose to use in our randomization test.

n.samples <- 100000

We create a vector of length n.samples that initially contains

NA values, but will get filled up with test statistic values

as the simulation progresses.

TestStat <- rep(NA, n.samples)

130 CHAPTER 11. LOGISTIC REGRESSION: ADDITIONAL TOPICS

Now here is the simulation that performs the repeated

re-arrangements of the Peaceworks values.

Each time through the loop a new two-way

table is created, from which we get a new

odds ratio test statistic to add to the vector

TestStat.

Loop starts here

for (i in 1:n.samples){

new.female <- sample(female)

tab <- table(new.female, improve)

TestStat[i] <- or(tab)

}

End of Loop

> p.value <- sum(TestStat >= TestStat0)/length(TestStat)

> p.value

[1] 0.4091

We now look at the second randomization test from the text relative to the archery study, this one
involving the same improve variable for the response, but now with the quantitative explanatory
variable, attendance. The code for this test follows, and it is dangerously similar to that we just
discussed.

The first difference is in the definition of the or function. Here the test statistic is the odds ratio
computed as the exponentiation of the slope parameter from the logistic model. The observed
value, which we store in TestStat0, is about .83, meaning the odds of improving decrease by a
factor of .83 for each unit increase in attendance. (This would be alarming were it not for what the
significance test reveals momentarily.) In our randomly generated vector of odds ratios, we now
are interested in those less than or the same as this .83. The fraction of these extreme values is the
p-value, and it is large enough to be nowhere near statistical significance, namely 0.5147.

assume the data are in data frame archery.df

> attendance <- archery.df$Sex=="f" # attendance is a quantitative predictor

> improve <- as.numeric(archery.df$Improvement > 0) #indicator for a positive improvement

We replicate the book’s logistic fit.

> model <- glm(improve ~ attendance, family=binomial)

> summary(model)

11.3. RANDOMIZATION TESTS 131

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.5792 11.0819 0.503 0.615

attendance -0.1904 0.5278 -0.361 0.718

Notice the slope coefficient is stored in model.

> model$coef[2]

attendance

-0.1904289

A simple way to get the odds ratio;

the text rounds it to .83.

> exp(model$coef[2])

attendance

0.8266045

So now define the odds ratio from the logistic output.

> or <- function(x) exp(glm(improve ~ x, family=binomial)$coef[2])

> or(attendance)

x

0.8266045 # agrees with earlier result

dataset <- data.frame(improve,attendance)

attach(dataset) # attach dataset so we can refer easily

to its variables.

First we compute and record at TestStat0 the odds ratio

test statistic for the original two-way table (the 3):

TestStat0 <- or(attendance)

We set n.samples, which is the number of random permutations

we choose to use in our randomization test.

n.samples <- 10000

We create a vector of length n.samples that initially contains

NA values, but will get filled up with test statistic values

as the simulation progresses.

TestStat <- rep(NA, n.samples)

Now here is the simulation that performs the repeated

rearrangements of the Peaceworks values.

132 CHAPTER 11. LOGISTIC REGRESSION: ADDITIONAL TOPICS

Each time through the loop a new two-way

table is created, from which we get a new

odds ratio test statistic to add to the vector

TestStat.

Loop starts here

for (i in 1:n.samples){

new.attendance <- sample(attendance)

TestStat[i] <- or(new.attendance)

}

End of Loop

> p.value <- sum(TestStat <= TestStat0)/length(TestStat)

> p.value

[1] 0.5147

11.4 Analyzing Two-way Tables with Logistic Regression

Example 11.7: Joking for a tip

To reproduce Figure 11.8 we use the R code below. We want to create a data frame that could
have produced the two-way table for the Joke experiment. We begin by creating a numeric data
frame called data that sets up a data frame of proper dimensions. R creates default names for
the variables, but we reassign them values of Response and Condition in that third line of code.
Then, we create the contingency table of counts using the table command. Finally, we use a new
R function barplot to create the desired barplot.

The barplot function contains a ylim=c(0,90) argument that creates a bit more space in the
y direction to allow for a proper legend. We use legend to produce the legend, the locator(1)

argument allowing the user to click in the graph to place the legend. This step can take some trial-
and-error, and it was here that we decided to use cex=.7 to reduce the font size a bit. The c("No
Tip","Tip"),fill=c("white","black") arguments align the tipping conditions to the shading
in the bars.

> data <- data.frame(numeric(211),ncol=2) # Create a data frame

of all 0s of proper dimensions.

> names(data) <- c("Condition","Response") # Create better variable names.

11.4. ANALYZING TWO-WAY TABLES WITH LOGISTIC REGRESSION 133

> data$Response <- factor(c(rep("Tip",30),rep("NoTip",42),rep("Tip",14),

+ rep("NoTip",60), rep("Tip",16),rep("NoTip",49)))

#Now make the data frame contain

#the proper categorical data

> data$Condition <- factor(c(rep("Joke",72),rep("Ad",74),rep("none",65)))

Create the contingency table:

> Joke.tab <- table(data$Response,data$Condition)[c(2,1),c(2,1,3)]

> Joke.tab

Joke Ad none

Tip 30 14 16

NoTip 42 60 49

Produce the barplot, with a legend

> barplot(Joke.tab,ylim=c(0,90))

> legend(locator(1),c("No Tip","Tip"),fill=c("white","black"),cex=.7)

Joke Ad none

0
20

40
60

80

No Tip
Tip

Figure 11.2: Proportion of tips within each card group

134 CHAPTER 11. LOGISTIC REGRESSION: ADDITIONAL TOPICS

Logistic Regression Results for the 2× 3 Table

We now add the logistic model fit and the chi-square analysis to replicate the textbook’s results.
To obtain the logistic model, use the code below. First, we read the data in. Notice that the
indicator variables for Joke, Ad, and None are already defined in the dataset. Then, we fit the
logistic model TipJoke.glm in the usual way. We follow this with calculations of odds ratios (the
vector or) and confidence intervals for the odds ratios (the matrix ci), and again we note that the
confidence intervals differ slightly from the Minitab intervals given in the text. We use cbind to
combine them into a table similar to that in the text.

> TipJoke.df <- read.csv(file=file.choose())

> names(TipJoke.df)

[1] "Card" "Tip" "Ad" "Joke" "None"

> TipJoke.glm <- glm(Tip ~ Joke + Ad, family=binomial)

> summary(TipJoke.glm)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.0383 -0.7518 -0.6476 1.3232 1.8248

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.1192 0.2879 -3.887 0.000101 ***

Joke 0.7828 0.3742 2.092 0.036471 *

Ad -0.3361 0.4135 -0.813 0.416413

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 251.94 on 210 degrees of freedom

Residual deviance: 242.14 on 208 degrees of freedom

AIC: 248.14

Obtain the odds ratios:

> or <- round(exp(TipJoke.glm$coef)[c(2,3)],2)

Joke Ad

2.19 0.71

Now obtain confidence intervals:

> ci <- round(exp(confint(TipJoke.glm)),2)[c(2,3),]

> ci

11.4. ANALYZING TWO-WAY TABLES WITH LOGISTIC REGRESSION 135

2.5 % 97.5 %

Joke 1.06 4.63

Ad 0.31 1.61

Combine them into a single table:

> cbind(or,ci)

or 2.5 % 97.5 %

Joke 2.19 1.06 4.63

Ad 0.71 0.31 1.61

Chi-square Test for a 2× k Table

We now add the results of the chi-square test for contingency tables using R’s chisq.test function.
By assigning the output of this function call to a variable, Tip.chisq, we can easily extract the
expected values and the p-value.

Joke.tab is a table of observed counts:

> Joke.tab <- table(Tip,Card)

> Joke.tab

Card

Tip Ad Joke None

0 60 42 49

1 14 30 16

The object Tip.chisq are results of a chi-square test,

from which we extract expected values, rounded to two places:

> Tip.chisq <- chisq.test(Joke.tab)

> round(Tip.chisq$expected,2)

Card

Tip Ad Joke None

0 52.96 51.53 46.52

1 21.04 20.47 18.48

> Tip.chisq

Pearson’s Chi-squared test

data: Joke.tab

X-squared = 9.9533, df = 2, p-value = 0.006897

136 CHAPTER 11. LOGISTIC REGRESSION: ADDITIONAL TOPICS

The Two-Sample Test and the Chi-square Test for a 2× 2 Table (review)

Finally, we conclude our R Companion by giving code to produce two procedures you may have
learned about in your STAT1 course. For this, we use the two-by-two table from the zapping
migraines example. Recall that in the table shown below, the zap.tab, columns represent a TMS
treatment versus a placebo and the outcomes are either that the patient is or is not pain free after
a period of time.

The code below first uses the prop.test function to calculate the z-test. Actually, it performs the
chi-square test, which is equivalent to the z-test when the two-sided alternative is the goal. Note
the inclusion of a 95% confidence interval for the difference in proportions. We run the function
again,this time using the alternative=‘‘greater") argument, which gives the one-sided test. In
a situation where our interests and expectations were that the TMS treatment would, if anything,
have a positive effect, it would probably be natural in this context to want the one-sided. Here we
get a one-side confidence interval.

Then we run the chi-square test. Note the p-value is identical for that of the z-test.

> zap.tab

TMS Placebo

Pain Free 39 22

Not Pain Free 61 78

> prop.test(zap.tab)

2-sample test for equality of proportions with continuity correction

data: zap.tab

X-squared = 6.0384, df = 1, p-value = 0.01400

alternative hypothesis: two.sided

95 percent confidence interval:

0.04266497 0.35832571

sample estimates:

prop 1 prop 2

0.6393443 0.4388489

> prop.test(zap.tab, alternative="greater")

2-sample test for equality of proportions with continuity correction

data: zap.tab

X-squared = 6.0384, df = 1, p-value = 0.006999

11.4. ANALYZING TWO-WAY TABLES WITH LOGISTIC REGRESSION 137

alternative hypothesis: greater

95 percent confidence interval:

0.06614378 1.00000000

sample estimates:

prop 1 prop 2

0.6393443 0.4388489

> chisq.test(zap.tab)

Pearson’s Chi-squared test with Yates’ continuity correction

data: zap.tab

X-squared = 6.0384, df = 1, p-value = 0.01400

Index

abline, 21, 27, 66
added variable plot, 49
addmargins, 98
analysis of covariance, 91
analysis of variance

aov, 66, 71
interaction plots, 71
interaction.plot, 73
leveneTest, 75
multiple tests, 75
pairwise.t.test, 76
TukeyHSD, 76

summary, 66, 71
using regression to do ANOVA, 86

anova, 33, 47
aov, 66, 71
apply, 6
arithmetic, 3
as.numeric, 18
as.table, 104
assigning a value to a variable, 4

Either <- or = will work, 4, 97
attach, 8
avPlots, 50
axis, 112

barplot, 133
boxplot, 52, 84, 119

horizontal orientation, 52

c(), 4
cbind, 7, 16, 24, 41
chisq.test, 135

coercion, 7
col, 112
comb, 79
comments in R code, #, 5
comparisons and contrast, 81
confint, 34, 102, 103, 105, 114
cor, 38, 41
curve, 102

data entry, 10
data frames, 6, 7

names, 8, 24
data importing, 10
data subsetting, 10
dotplots (using xyplot), 64

entering data into R, 5
assigning values to a variable, 5

error messages, 8

factor (variable type), 63
Fisher’s least signifigant difference, 67, 71
for, 79
for loops, 79, 128
functions

built-in, 12
user defined, 104
user-defined, 12, 14

generic function, 25
get, 9
glm, 101, 105, 113
graphics

add a title (main argument), 52

139

140

array of graphs with par(mfrow=), 27, 52
coded scatterplot, 92
comparative dotplots (using xyplot), 64
creating a table of empirical proportions, 104,

121
creating a two-way table, 104
creating table of summary statistics, 72
empirical logit plots, 107
example of fine control, 112
interaction plots, 71, 73
jittered dotplots, 112
jittered plots, 101
legend, 39
line type (lty), 40
matrix plot, 41, 52
other curves, 29
parallel boxplots, 119
plot symbol color (col), 112
plotting symbols (pch), 40
curve function, 102

h, 22, 27
head, 25
horizontal, 52

I, 44, 114, 117
indicator variables, 59

using the == operator, 86
int, 34
interaction notation, 40, 44, 118
interaction plots, 71, 73
interaction.plot, 73
is.data.frame, 7
is.matrx, 7

jitter, 101, 112

kruskal.test, 84

legend, 39, 133
length, 16
level, 35
levels, 81
Levene’s test, 75

leveneTest, 75
line type (lty), 22, 40
list, 22

components, 24
lm, 21, 38
locator, 39
logistic regression

from a 2-by-2 table, 109
interaction, 114
predict, 99, 100

ls.diag, 57
lty, 22, 40

main, 29, 52
matpoints, 35
matrix, 6, 97, 108
mean, 16
mfrow, 27, 52, 119
multiple tests, 75

via simultaneous confidence intervals, 77

names, 8, 24
nested F-test, 46

using anova function, 47
Nonparametrics, 82

kruskal.test, 84
wilcox.test, 82
Wilcoxon-Mann-Whitney, 82

normal plots, 26, 66, 73

order, 107, 108
outer, 68
overdispersion, 125

quasibinomial, 125

pairs, 41, 52
pairwise.t.test, 76
par, 27, 52, 119
pch, 40
plot, 29, 66
points, 30
predict, 28, 34, 39, 59, 99
predict, 100
prop.table, 98, 121

INDEX 141

prop.test, 136

qqline, 18, 26
qqnorm, 18, 26
query functions, 7, 24

R arguments, 6, 9, 11, 13, 14
by name, 13
by position, 13
amount, 101
byrow, 108
family, 101
horizontal, 52
h, 22, 27
int, 34
level, 35
locator, 39
lty, 22, 40
main, 29, 52
mfrow, 27, 119
pch, 40
response, 99, 100
tck, 112
type, 30
xlab, 112
ylab, 112

R functions
t.test, 16
abline, 21, 27, 66
addmargins, 98
anova, 33, 47
aov, 66, 71
apply, 6
as.numeric, 18
as.table, 104
attach, 8
avPlots, 50
axis, 112
barplot, 133
boxplot, 52, 84, 119
c(), 4
cbind, 7, 16, 24, 41
chisq.test, 135

col, 112
comb, 79
confint, 34, 102, 103, 105, 114
cor, 38, 41
curve, 102
for, 79
get, 9
glm, 101, 105, 113
head, 25
interaction.plot, 73
is.data.frame, 7
is.matrix, 7
jitter, 101, 112
kruskal.test, 84
legend, 39, 133
length, 16
levels, 81
leveneTest, 75
lm, 21, 38
ls.diag, 57
matpoints, 35
matrix, 6, 97, 108
mean, 16
names, 8, 24
order, 107, 108
outer, 68
pairs, 41, 52
pairwise.t.test, 76
par, 27, 52, 119
plot, 29, 66
points, 30
predict, 28, 34, 39, 59, 99, 100
prop.table, 98, 121
prop.test, 136
qqline, 18, 26
qqnorm, 18, 26
rbind, 71, 121
read.csv, 10
read.table, 10
regsubsets, 53
round, 16, 64
sample, 129
sd, 18

142

sort, 107, 108
str, 15, 25
summary, 25, 38, 66, 71, 102, 105
table, 104
tapply, 16, 64, 70, 81, 121
TukeyHSD, 76
unique, 121
vif, 45
wilcox.test, 82
xyplot, 15, 64, 92
ysummary, 33

R libraries, 15
car, 45, 50, 75
lattice, 64
leaps, 53
lattice, 15

R logical functions
range, 35

R logical operators, 11
&, 11

, 112
==, 11, 17, 86

R moment, 47
R objects, 3, 25, 38

regression object, 25, 38
component names, 43

aov object, 81
R operator

I, 44
range, 35
rbind, 71, 121
read.csv, 10
read.table, 10
regression, 21

added variable plot, 49
anova, 33
bootstrap, 61
choosing predictors, 51
confint, 34
Cook’s distance, 57
diagnostics, 26
fitted, 38

fitted line, 21
indicator variables, 59
leverage, 57
predict, 34, 39
predicting a value, 28
randomization test, 60
residual plots, 27
standardized residuals, 57
studentized residuals, 57
summary, 33, 38
to do analysis of variance, 86
unusual points, 57

regsubsets, 53
round, 16, 64

sample, 129
sd, 18
search path, 8
sort, 107, 108
str, 15, 25
subsetting data, 7
summary, 25, 33, 38, 66, 71, 102, 105

t.test, 16
table, 104
tapply, 16, 64, 70, 81, 121
tck, 112
TukeyHSD, 76
two regression lines, 39
type, 30

unique, 121

variance-inflation factors, 45
vector

: (for vector input), 24
vif, 45

wilcox.test, 82

xlab, 112
xyplot, 15, 64, 92

ylab, 112

